

    
      
          
            
  
Pylint User Manual



	Introduction

	Contribute

	What’s New in Pylint

	A Beginner’s Guide to Code Standards in Python - Pylint Tutorial

	Installation

	Running Pylint

	Pylint output

	Messages control

	Pylint features

	Optional Pylint checkers in the extensions module

	Configuration

	Editor and IDE integration

	Plugins

	Frequently Asked Questions

	Some projects using Pylint









          

      

      

    

  

    
      
          
            
  
Introduction


What is Pylint?

Pylint is a tool that checks for errors in Python code, tries to enforce a
coding standard and looks for code smells. It can also look for certain type
errors, it can recommend suggestions about how particular blocks
can be refactored and can offer you details about the code’s complexity.

Other similar projects would include the now defunct pychecker [http://pychecker.sf.net], pyflakes [https://github.com/pyflakes/pyflakes],
flake8 [https://gitlab.com/pycqa/flake8/] and mypy [https://github.com/JukkaL/mypy]. The default coding style used by Pylint is close to PEP 008 [http://www.python.org/dev/peps/pep-0008/].

Pylint will display a number of messages as it analyzes the code and it can
also be used for displaying some statistics about the number of warnings and
errors found in different files. The messages are classified under various
categories such as errors and warnings.

Last but not least, the code is given an overall mark, based on the number and
severity of the warnings and errors.

Pylint was born in 2003 at Logilab [http://www.logilab.fr], that funded Sylvain Thénault to lead its
development. Since 2015, the project went under the PyCQA [https://github.com/PyCQA] umbrella, where it
is currently maintained and developed by a couple of contributors.




What Pylint is not?

What Pylint says is not to be taken as gospel and Pylint isn’t smarter than you
are: it may warn you about things that you have conscientiously done.

Pylint tries hard to report as few false positives as possible for errors, but
it may be too verbose with warnings. That’s for example because it tries to
detect things that may be dangerous in a context, but are not in others, or
because it checks for some things that you don’t care about. Generally, you
shouldn’t expect Pylint to be totally quiet about your code, so don’t
necessarily be alarmed if it gives you a hell lot of messages for your project!

The best way to tackle pylint’s verboseness is to:



	enable or disable the messages or message categories that you want to be
activated or not for when pylint is analyzing your code.
This can be done easily through a command line flag. For instance, disabling
all convention messages is simple as a --disable=C option added to pylint
command.


	create a custom configuration file, tailored to your needs. You can generate
one using pylint’s command --generate-rcfile.








	Quoting Alexandre Fayolle

	My usage pattern for Pylint is to generally run pylint -E quite often to
get stupid errors flagged before launching an application (or before
committing). I generally run Pylint with all the bells and whistles
activated some time before a release, when I want to cleanup the code.
And when I do that I simply ignore tons of the false warnings (and I
can do that without being driven mad by this dumb program which is not
smart enough to understand the dynamicity of Python because I only run
it once or twice a week in this mode)



	Quoting Marteen Ter Huurne

	In our project we just accepted that we have to make some modifications in our
code to please Pylint:


	stick to more naming conventions (unused variables ending in underscores,
mix-in class names ending in “Mixin”)


	making all abstract methods explicit (rather than just not defining them in
the superclass)


	add # pylint: disable=X0123 comments:


	for messages which are useful in general, but not in a specific case


	for Pylint bugs


	for Pylint limitations (for instance Twisted’s modules create a lot of
definitions dynamically so Pylint does not know about them)








The effort is worth it, since Pylint helps us a lot in keeping the code clean
and finding errors early. Although most errors found by Pylint would also be
found by the regression tests, by fixing them before committing, we save time.
And our regression tests do not cover all code either, just the most complex
parts.











          

      

      

    

  

    
      
          
            
  
Contribute


Bug reports, feedback

You think you have found a bug in Pylint? Well, this may be the case
since Pylint is under heavy development.

Please take the time to check if it is already in the issue tracker at
https://github.com/PyCQA/pylint

If you can not find it in the tracker, create a new issue there or discuss your
problem on the code-quality@python.org mailing list.

The code-quality mailing list is also a nice place to provide feedback about
Pylint, since it is shared with other tools that aim at improving the quality of
python code.

Note that if you don’t find something you have expected in Pylint’s
issue tracker, it may be because it is an issue with one of its dependencies, namely
astroid.


	https://bitbucket.org/logilab/astroid







Mailing lists

You can subscribe to this mailing list at
http://mail.python.org/mailman/listinfo/code-quality

Archives are available at
http://mail.python.org/pipermail/code-quality/

Archives before April 2013 are available at
http://lists.logilab.org/pipermail/python-projects/




Repository

Pylint is developed using the git [https://git-scm.com/] distributed version control system.

You can clone Pylint and its dependencies from

hg clone https://bitbucket.org/logilab/pylint
hg clone https://bitbucket.org/logilab/astroid
hg clone http://hg.logilab.org/logilab/common





Got a change for Pylint?  Below are a few steps you should take to make sure
your patch gets accepted.


	Test your code



	Pylint is very well tested, with a high good code coverage.
It has two types of tests, usual unittests and functional tests.

The usual unittests can be found under /test directory and they can
be used for testing almost anything Pylint related. But for the ease
of testing Pylint’s messages, we also have the concept of functional tests.



	You should also run all the tests to ensure that your change isn’t
breaking one. You can run the tests using the tox [http://tox.readthedocs.io/en/latest/] package, as in:

python -m tox
python -m tox -epy27 # for Python 2.7 suite only
python -m tox -epylint # for running Pylint over Pylint's codebase














	Add a short entry to the ChangeLog describing the change, except for internal
implementation only changes


	Write a comprehensive commit message


	Relate your change to an issue in the tracker if such an issue exists (see
this page [https://help.github.com/articles/closing-issues-via-commit-messages/] of Bitbucket documentation for more information on this)


	Document your change, if it is a non-trivial one.


	Send a pull request from GitHub (more on this here [https://help.github.com/articles/using-pull-requests/])







Functional tests

These are residing under ‘/test/functional’ and they are formed of multiple
components. First, each Python file is considered to be a test case and it
should be accompanied by a .txt file, having the same name, with the messages
that are supposed to be emitted by the given test file.

In the Python file, each line for which Pylint is supposed to emit a message
has to be annotated with a comment in the form # [message_symbol], as in:

a, b, c = 1 # [unbalanced-tuple-unpacking]





If multiple messages are expected on the same line, then this syntax can be used:

a, b, c = 1.test # [unbalanced-tuple-unpacking, no-member]





The syntax of the .txt file has to be this:

symbol:line_number:function_or_class:Expected message





For example, this is a valid message line:

abstract-class-instantiated:79:main:Abstract class 'BadClass' with abstract methods instantiated





If the Python file is expected to not emit any errors, then the .txt file has to be empty.
If you need special control over Pylint’s flag, you can also create a .rc file, which
can have sections of Pylint’s configuration.







          

      

      

    

  

    
      
          
            
  
What’s New in Pylint

High level descriptions of the most important changes between major Pylint versions.



	What’s New In Pylint 1.6





The “Changelog” contains all nontrivial changes to Pylint for the current version.



	Pylint NEWS
	What’s new in Pylint 1.6.4?

	What’s new in Pylint 1.6.3?

	What’s new in Pylint 1.6.2?

	What’s new in Pylint 1.6.1?

	What’s New in Pylint 1.6.0?

	What’s New in Pylint 1.5.6?

	What’s New in Pylint 1.5.5?

	What’s New in Pylint 1.5.4?

	What’s New in Pylint 1.5.3?

	What’s New in Pylint 1.5.2?

	What’s New in Pylint 1.5.1?

	What’s New in Pylint 1.5.0?

	What’s New in Pylint 1.4.3?

	What’s New in Pylint 1.4.2?

	What’s New in Pylint 1.4.1?

	What’s New in Pylint 1.4.0?

	What’s New in Pylint 1.3.0?

	What’s New in Pylint 1.2.1?

	What’s New in Pylint 1.2.0?

	What’s New in Pylint 1.1.0?

	What’s New in Pylint 1.0.0?

	What’s New in Pylint 0.28.0?

	What’s New in Pylint 0.27.0?

	What’s New in Pylint 0.26.0?

	What’s New in Pylint 0.25.2?

	What’s New in Pylint 0.25.1?

	What’s New in Pylint 0.25.0?

	What’s New in Pylint 0.24.0?

	What’s New in Pylint 0.23.0?

	What’s New in Pylint 0.22.0?

	What’s New in Pylint 0.21.4?

	What’s New in Pylint 0.21.3?

	What’s New in Pylint 0.21.2?

	What’s New in Pylint 0.21.1?

	What’s New in Pylint 0.21.0?

	What’s New in Pylint 0.20.0?

	What’s New in Pylint 0.19.0?

	What’s New in Pylint 0.18.0?

	What’s New in Pylint 0.17.0?

	What’s New in Pylint 0.16.0?

	What’s New in Pylint 0.15.2?

	What’s New in Pylint 0.15.1?

	What’s New in Pylint 0.15.0?

	What’s New in Pylint 0.14.0?

	What’s New in Pylint 0.13.2?

	What’s New in Pylint 0.13.1?

	What’s New in Pylint 0.13.0?

	What’s New in Pylint 0.12.2?

	What’s New in Pylint 0.12.1?

	What’s New in Pylint 0.12.0?

	What’s New in Pylint 0.11.0?

	What’s New in Pylint 0.10.0?

	What’s New in Pylint 0.9.0?

	What’s New in Pylint 0.8.1?

	What’s New in Pylint 0.8.0?

	What’s New in Pylint 0.7.0?

	What’s New in Pylint 0.6.4?

	What’s New in Pylint 0.6.3?

	What’s New in Pylint 0.6.2?

	What’s New in Pylint 0.6.1?

	What’s New in Pylint 0.6.0?

	What’s New in Pylint 0.5.0?

	What’s New in Pylint 0.4.2?

	What’s New in Pylint 0.4.1?

	What’s New in Pylint 0.4.0?

	What’s New in Pylint 0.3.3?

	What’s New in Pylint 0.3.2?

	What’s New in Pylint 0.3.1?

	What’s New in Pylint 0.3.0?

	What’s New in Pylint 0.2.1?

	What’s New in Pylint 0.2.0?

	What’s New in Pylint 0.1.2?

	What’s New in Pylint 0.1.1?

	What’s New in Pylint 0.1?













          

      

      

    

  

    
      
          
            
  
What’s New In Pylint 1.6


	Release

	1.6.5



	Date

	2016-07-07






Summary – Release highlights

Nothing major.




New checkers


	We added a new recommendation check, consider-iterating-dictionary,
which is emitted when a dictionary is iterated by using .keys().

For instance, the following code would trigger this warning, since
the dictionary’s keys can be iterated without calling the method explicitly.

for key in dictionary.keys():
    ...

# Can be refactored to:
for key in dictionary:
    ...







	trailing-newlines check was added, which is emitted when a file has trailing newlines.


	invalid-length-returned check was added, which is emitted when the __len__
special method returns something else than a non-negative number. For instance, this
example is triggering it:

class Container(object):
    def __len__(self):
        return self._items # Oups, forgot to call len() over it.







	Add a new check to the check_docs extension for looking for duplicate
constructor parameters in a class constructor docstring or in a class docstring.

The check multiple-constructor-doc is emitted when the parameter is documented
in both places.



	We added a new extension plugin, pylint.extensions.mccabe, which can be used
for warning about the complexity in the code.

You can enable it as in:

$ pylint module_or_project --load-plugins=pylint.extensions.mccabe





See more at Complexity checker








New features


	generated-members now supports qualified names through regular expressions.

For instance, for ignoring all the errors generated by numpy.core’s attributes, we can
now use:

$ pylint a.py --generated-members=numpy.*







	Add the ability to ignore files based on regex matching, with the new --ignore-patterns option.

Rather than clobber the existing ignore option, we decided to have a separate
option for it. For instance, for ignoring all the test files, we can now use:

$ pylint myproject --ignore-patterns=test.*?py







	We added a new option, redefining-builtins-modules, which is used for
defining the modules which can redefine builtins.
pylint will emit an error when a builtin is redefined, such as defining
a variable called next. But in some cases, the builtins can be
redefined in the case they are imported from other places, different
than the builtins module, such is the case for six.moves, which
contains more forward-looking functions:

$ cat a.py
# Oups, now pylint emits a redefined-builtin message.
from six.moves import open
$ pylint a.py --redefining-builtins-modules=six.moves





Default values: six.moves,future.builtins








Bug fixes


	Fixed a bug where the top name of a qualified import was detected as an unused variable.


	We don’t warn about invalid-sequence-index if the indexed object has unknown
base classes, that Pylint cannot deduce.







Other Changes


	The bad-builtin check was moved into an extension.

The check was complaining about used builtin functions which
were supposed to not be used. For instance, map and filter
were falling into this category, since better alternatives can
be used, such as list comprehensions. But the check was annoying,
since using map or filter can have its use cases and as
such, we decided to move it to an extension check instead.
It can now be enabled through --load-plugins=pylint.extensions.bad_builtin.



	We use the configparser backport internally, for Python 2.

This allows having comments inside list values, in the configuration,
such as:

disable=no-member,
        # Don't like this check
        bad-indentation







	We now use the isort [https://pypi.python.org/pypi/isort] package internally.

This improves the `wrong-import-order check, so now
we should have less false positives regarding the import order.



	We do not emit import-error or no-name-in-module for fallback import blocks by default.

A fallback import block can be considered a TryExcept block, which contains imports in both
branches, such as:

try:
    import urllib.request as request
except ImportError:
    import urllib2 as request





In the case where pylint can not find one import from the except branch, then
it will emit an import-error, but this gets cumbersome when trying to write
compatible code for both Python versions. As such, we don’t check these blocks by default,
but the analysis can be enforced by using the new --analyse-fallback-block flag.



	reimported is emitted when the same name is imported from different module, as in:

from collections import deque, OrderedDict, deque












Deprecated features


	The HTML support was deprecated and will be eventually removed
in Pylint 2.0.

This feature was lately a second class citizen in Pylint, being
often neglected and having a couple of bugs. Since we now have
the JSON reporter, this can be used as a basis for more prettier
HTML outputs than what Pylint can currently offer.



	The --files-output option was deprecated and will be eventually
removed in Pylint 2.0.


	The --optimize-ast option was deprecated and will be eventually
removed in Pylint 2.0.

The option was initially added for handling pathological cases,
such as joining too many strings using the addition operator, which
was leading pylint to have a recursion error when trying to figure
out what the string was. Unfortunately, we decided to ignore the
issue, since the pathological case would have happen when the
code was parsed by Python as well, without actually reaching the
runtime step and as such, we will remove the option in the future.



	The check_docs extension is now deprecated. The extension is still available
under the docparams name, so this should work:

$ pylint module_or_package --load-extensions=pylint.extensions.docparams





The old name is still kept for backward compatibility, but it will be
eventually removed.








Removed features


	None yet










          

      

      

    

  

    
      
          
            
  
Pylint NEWS


What’s new in Pylint 1.6.4?

Release date: 2016-07-19



	Recurse into all the ancestors when checking if an object is an exception

Since we were going only into the first level, we weren’t inferring
when a class used a metaclass which defined a base Exception class
for the aforementioned class.











What’s new in Pylint 1.6.3?

Release date: 2016-07-18



	Do not crash when inferring uninferable exception types for docparams extension

Close #998











What’s new in Pylint 1.6.2?

Release date: 2016-07-15



	Do not crash when printing the help of options with default regular expressions

Close #990



	More granular versions for deprecated modules.

Close #991



	Do not crash in docparams when we can’t infer the exception types.










What’s new in Pylint 1.6.1?

Release date: 2016-07-07



	Use environment markers for supporting conditional dependencies.










What’s New in Pylint 1.6.0?

Release date: 2016-07-07



	Added a new extension, pylint.extensions.mccabe, for warning
about complexity in code.


	Deprecate support for –optimize-ast. Part of #975.


	Deprecate support for the HTML output. Part of #975.


	Deprecate support for –output-files. Part of #975.


	Fixed a documentation error for the check_docs extension. Fixes #735.


	Made the list of property-defining decorators configurable.


	Fix a bug where the top name of a qualified import was detected as unused variable.

Close #923.



	bad-builtin is now an extension check.


	generated-members support qualified name through regular expressions.

For instance, one can specify a regular expression as –generated-members=astroid.node_classes.*
for ignoring every no-member error that is accessed as in astroid.node_classes.missing.object.



	Add the ability to ignore files based on regex matching, with the new --ignore-patterns
option.

This addresses issue #156 by allowing for multiple ignore patterns
to be specified. Rather than clobber the existing ignore option, we
introduced a new one called ignore-patterns.



	Added a new error, ‘trailing-newlines’, which is emitted when a file
has trailing new lines.

Closes issue #682.



	Add a new option, ‘redefining-builtins-modules’, for controlling the modules
which can redefine builtins, such as six.moves and future.builtins.

Close #464.



	‘reimported’ is emitted when the same name is imported from different module.

Close #162.



	Add a new recommendation checker, ‘consider-iterating-dictionary’, which is emitted
which is emitted when a dictionary is iterated through .keys().

Close #699



	Use the configparser backport for Python 2

This fixes a problem we were having with comments inside values, which is fixed
in Python 3’s configparser.
Close #828



	A new error was added, ‘invalid-length-returned’, when the __len__
special method returned something else than a non-negative number.

Close issue #557



	Switch to using isort internally for wrong-import-order.

Closes #879.



	check_docs extension can find constructor parameters in __init__.

Closes #887.



	Don’t warn about invalid-sequence-index if the indexed object has unknown base
classes.

Closes #867



	Don’t crash when checking, for super-init-not-called, a method defined in an if block.


	Do not emit import-error or no-name-in-module for fallback import blocks by default.

Until now, we warned with these errors when a fallback import block (a TryExcept block
that contained imports for Python 2 and 3) was found, but this gets cumbersome when
trying to write compatible code. As such, we don’t check these blocks by default,
but the analysis can be enforced by using the new --analyse-fallback-block flag.

Close #769.











What’s New in Pylint 1.5.6?

Release date: 2016-06-06



	config files with BOM markers can now be read.

Close #864.



	epylint.py_run does not crash on big files, using .communicate() instead of .wait()

Close #599











What’s New in Pylint 1.5.5?

Release date: 2016-03-21



	Let visit_importfrom from Python 3 porting checker be called when everything is disabled

Because the visit method was filtering the patterns it was expecting to be activated,
it didn’t run when everything but one pattern was disabled, leading to spurious false
positives

Close #852



	Don’t emit unsubscriptable-value for classes with unknown
base classes.

Close #776.



	Use an OrderedDict for storing the configuration elements

This fixes an issue related to impredictible order of the disable / enable
elements from a config file. In certain cases, the disable was coming before
the enable which resulted in classes of errors to be enabled, even though the intention
was to disable them. The best example for this was in the context of running multiple
processes, each one of it having different enables / disables that affected the output.

Close #815



	Don’t consider bare and broad except handlers as ignoring NameError,
AttributeError and similar exceptions, in the context of checkers for
these issues.

Closes issue #826











What’s New in Pylint 1.5.4?

Release date: 2016-01-15



	Merge StringMethodChecker with StringFormatChecker. This fixes a
bug where disabling all the messages and enabling only a handful of
messages from the StringFormatChecker would have resulted in no
messages at all.


	Don’t apply unneeded-not over sets.










What’s New in Pylint 1.5.3?

Release date: 2016-01-11



	Handle the import fallback idiom with regard to wrong-import-order.

Closes issue #750.



	Decouple the displaying of reports from the displaying of messages

Some reporters are aggregating the messages instead of displaying
them when they are available. The actual displaying was conflatted
in the generate_reports. Unfortunately this behaviour was flaky
and in the case of the JSON reporter, the messages weren’t shown
at all if a file had syntax errors or if it was missing.
In order to fix this, the aggregated messages can now be
displayed with Reporter.display_message, while the reports are
displayed with display_reports.

Closes issues #766 and #765.



	Ignore function calls with variadic arguments without a context.

Inferring variadic positional arguments and keyword arguments
will result into empty Tuples and Dicts, which can lead in
some cases to false positives with regard to no-value-for-parameter.
In order to avoid this, until we’ll have support for call context
propagation, we’re ignoring such cases if detected.
Closes issue #722.



	Treat AsyncFunctionDef just like FunctionDef nodes,
by implementing visit_asyncfunctiondef in terms of
visit_functiondef.

Closes issue #767.



	Take in account kwonlyargs when verifying that arguments
are defined with the check_docs extension.

Closes issue #745.



	Suppress reporting ‘unneeded-not’ inside __ne__ methods

Closes issue #749.











What’s New in Pylint 1.5.2?

Release date: 2015-12-21



	Don’t crash if graphviz is not installed, instead emit a
warning letting the user to know.

Closes issue #168.



	Accept only functions and methods for the deprecated-method checker.

This prevents a crash which can occur when an object doesn’t have
.qname() method after the inference.



	Don’t emit super-on-old-class on classes with unknown bases.
Closes issue #721.


	Allow statements in if or try blocks containing imports.

Closes issue #714.











What’s New in Pylint 1.5.1?

Release date: 2015-12-02



	Don’t emit unsubscriptable-object if the node is found
inside an abstract class. Closes issue #685.


	Add wrong-import-position to check_messages’s decorator arguments
for ImportChecker.leave_module

This fixes an esoteric bug which occurs when ungrouped-imports and
wrong-import-order are disabled and pylint is executed on multiple files.
What happens is that without wrong-import-position in check_messages,
leave_module will never be called, which means that the first non-import node
from other files might leak into the current file,
leading to wrong-import-position being emitted by pylint.



	Fix a crash which occurred when old visit methods are encountered
in plugin modules. Closes issue #711.


	Don’t emit import-self and cyclic-import for relative imports
of modules with the same name as the package itself.
Closes issues #708 and #706.










What’s New in Pylint 1.5.0?

Release date: 2015-11-29



	Added multiple warnings related to imports. ‘wrong-import-order’
is emitted when PEP 8 recommendations regarding imports are not
respected (that is, standard imports should be followed by third-party
imports and then by local imports). ‘ungrouped-imports’ is emitted
when imports from the same package or module are not placed
together, but scattered around in the code. ‘wrong-import-position’
is emitted when code is mixed with imports, being recommended for the
latter to be at the top of the file, in order to figure out easier by
a human reader what dependencies a module has.
Closes issue #692.


	Added a new refactoring warning, ‘unneeded-not’, emitted
when an expression with the not operator could be simplified.
Closes issue #670.


	Added a new refactoring warning, ‘simplifiable-if-statement’,
used when an if statement could be reduced to a boolean evaluation
of its test. Closes issue #698.


	Added a new refactoring warning, ‘too-many-boolean-expressions’,
used when a if statement contains too many boolean expressions,
which makes the code less maintainable and harder to understand.
Closes issue #677.


	Property methods are shown as attributes instead of functions in
pyreverse class diagrams. Closes Issue #284


	Add a new refactoring error, ‘too-many-nested-blocks’, which is emitted
when a function or a method has too many nested blocks, which makes the
code less readable and harder to understand. Closes issue #668.


	Add a new error, ‘unsubscriptable-object’, that is emitted when
value used in subscription expression doesn’t support subscription
(i.e. doesn’t define __getitem__ method).


	Don’t warn about abstract classes instantiated in their own
body. Closes issue #627.


	Obsolete options are not present by default in the generated
configuration file. Closes issue #632.


	non-iterator-returned can detect classes with iterator-metaclasses.
Closes issue #679.


	Add a new error, ‘unsupported-membership-test’, emitted when value
to the right of the ‘in’ operator doesn’t support membership test
protocol (i.e. doesn’t define __contains__/__iter__/__getitem__)


	Add new errors, ‘not-an-iterable’, emitted when non-iterable value
is used in an iterating context (starargs, for-statement,
comprehensions, etc), and ‘not-a-mapping’, emitted when non-mapping
value is used in a mapping context. Closes issue #563.


	Make ‘no-self-use’ checker not emit a warning if there is a ‘super()’
call inside the method.
Closes issue #667.


	Add checker to identify multiple imports on one line.
Closes issue #598.


	Fix unused-argument false positive when the “+=” operator is used.
Closes issue #518.


	Don’t emit import-error for ignored modules. PyLint will not emit import
errors for any import which is, or is a subpackage of, a module in
the ignored-modules list. Closes issue #223.


	Fix unused-import false positive when the import is used in a
class assignment. Closes issue #475


	Add a new error, ‘not-context-manager’, emitted when something
that doesn’t implement __enter__ and __exit__ is used in a with
statement.


	Add a new warning, ‘confusing-with-statement’, emitted by the
base checker, when an ambiguous looking with statement is used.
For example with open() as first, second which looks like a
tuple assignment but is actually 2 context managers.


	Add a new warning, ‘duplicate-except’, emitted when there is an
exception handler which handles an exception type that was handled
before. Closes issue #485.


	A couple of warnings got promoted to errors, since they could uncover
potential bugs in the code. These warnings are: assignment-from-none,
unbalanced-tuple-unpacking, unpacking-non-sequence, non-iterator-returned.
Closes issue #388.


	Allow ending a pragma control with a semicolon. In this way, users
can continue a pragma control with a reason for why it is used,
as in # pylint: disable=old-style-class;reason=….
Closes issue #449.


	–jobs can be used with –load-plugins now. Closes issue #456.


	Improve the performance of –jobs when dealing only with a package
name. Closes issue #479.


	Don’t emit an unused-wildcard-import when the imported name comes
from another module and it is in fact a __future__ name.


	The colorized reporter now works on Windows. Closes issue #96.


	Remove pointless-except warning. It was previously disabled by
default and it wasn’t very useful. Closes issue #506.


	Fix a crash on Python 3 related to the string checker, which
crashed when it encountered a bytes string with a .format
method called.


	Don’t warn about no-self-use for builtin properties.


	Fix a false positive for bad-reversed-sequence, when a subclass
of a dict provides a __reversed__ method.


	Change the default no-docstring-rgx so missing-docstring isn’t
emitted for private functions.


	Don’t emit redefined-outer-name for __future__ directives.
Closes issue #520.


	Provide some hints for the bad-builtin message. Closes issue #522.


	When checking for invalid arguments to a callable, in typecheck.py,
look up for the __init__ in case the found __new__ comes from builtins.

Since the __new__ comes from builtins, it will not have attached any
information regarding what parameters it expects, so the check
will be useless. Retrieving __init__ in that case will at least
detect a couple of false negatives. Closes issue #429.



	Don’t emit no-member for classes with unknown bases.

Since we don’t know what those bases might add, we simply ignore
the error in this case.



	Lookup in the implicit metaclass when checking for no-member,
if the class in question has an implicit metaclass, which is
True for new style classes. Closes issue #438.


	Add two new warnings, duplicate-bases and inconsistent-mro.

duplicate-bases is emitted when a class has the same bases
listed more than once in its bases definition, while inconsistent-mro
is emitted when no sane mro hierarchy can be determined. Closes issue #526.



	Remove interface-not-implemented warning. Closes issue #532.


	Remove the rest of interface checks: interface-is-not-class,
missing-interface-method, unresolved-interface. The reason is that
its better to start recommending ABCs instead of the old Zope era
of interfaces. One side effect of this change is that ignore-iface-methods
becomes a noop, it’s deprecated and it will be removed at some time.


	Emit a proper deprecation warning for reporters.BaseReporter.add_message.

The alternative way is to use handle_message. add_message will be removed in
Pylint 1.6.



	Added new module ‘extensions’ for optional checkers with the test
directory ‘test/extensions’ and documentation file ‘doc/extensions.rst’.


	Added new checker ‘extensions.check_docs’ that verifies parameter
documention in Sphinx, Google, and Numpy style.


	Detect undefined variable cases, where the “definition” of an undefined
variable was in del statement. Instead of emitting used-before-assignment,
which is totally misleading, it now emits undefined-variable.
Closes issue #528.


	Don’t emit attribute-defined-outside-init and access-member-before-definition
for mixin classes. Actual errors can occur in mixin classes, but this is
controlled by the ignore-mixin-members option. Closes issue #412.


	Improve the detection of undefined variables and variables used before
assignment for variables used as default arguments to function,
where the variable was first defined in the class scope.
Closes issue #342 and issue #404.


	Add a new warning, ‘unexpected-special-method-signature’, which is emitted
when a special method (dunder method) doesn’t have the expected signature,
which can lead to actual errors in the application code.
Closes issue #253.


	Remove ‘bad-context-manager’ due to the inclusion of ‘unexpected-special-method-signature’.


	Don’t emit no-name-in-module if the import is guarded by an ImportError, Exception or
a bare except clause.


	Don’t emit no-member if the attribute access node is protected by an
except handler, which handles AttributeError, Exception or it is a
bare except.


	Don’t emit import-error if the import is guarded by an ImportError, Exception or a
bare except clause.


	Don’t emit undefined-variable if the node is guarded by a NameError, Exception
or bare except clause.


	Add a new warning, ‘using-constant-test’, which is emitted when a conditional
statement (If, IfExp) uses a test which is always constant, such as numbers,
classes, functions etc. This is most likely an error from the user’s part.
Closes issue #524.


	Don’t emit ‘raising-non-exception’ when the exception has unknown
bases. We don’t know what those bases actually are and it’s better
to assume that the user knows what he is doing rather than emitting
a message which can be considered a false positive.


	Look for a .pylintrc configuration file in the current folder,
if pylintrc is not found. Dotted pylintrc files will not be searched
in the parents of the current folder, as it is done for pylintrc.


	Add a new error, ‘invalid-unary-type-operand’, emitted when
an unary operand is used on something which doesn’t support that
operation (for instance, using the unary bitwise inversion operator
on an instance which doesn’t implement __invert__).


	Take in consideration differences between arguments of various
type of functions (classmethods, staticmethods, properties)
when checking for arguments-differ. Closes issue #548.


	astroid.inspector was moved to pylint.pyreverse, since it belongs
there and it doesn’t need to be in astroid.


	astroid.utils.LocalsVisitor was moved to pylint.pyreverse.LocalsVisitor.


	pylint.checkers.utils.excepts_import_error was removed.
Use pylint.chekcers.utils.error_of_type instead.


	Don’t emit undefined-all-variables for nodes which can’t be
inferred (YES nodes).


	yield-outside-func is also emitted for yield from.


	Add a new error, ‘too-many-star-expressions’, emitted when
there are more than one starred expression (*x) in an assignment.
The warning is emitted only on Python 3.


	Add a new error, ‘invalid-star-assignment-target’, emitted when
a starred expression (*x) is used as the lhs side of an assignment,
as in *x = [1, 2]. This is not a SyntaxError on Python 3 though.


	Detect a couple of objects which can’t be base classes (bool,
slice, range and memoryview, which weren’t detected until now).


	Add a new error for the Python 3 porting checker, import-star-module-level,
which is used when a star import is detected in another scope than the
module level, which is an error on Python 3. Using this will emit a
SyntaxWarning on Python 2.


	Add a new error, ‘star-needs-assignment-target’, emitted on Python 3 when
a Starred expression (*x) is not used in an assignment target. This is not
caught when parsing the AST on Python 3, so it needs to be a separate check.


	Add a new error, ‘unsupported-binary-operation’, emitted when
two a binary arithmetic operation is executed between two objects
which don’t support it (a number plus a string for instance).
This is currently disabled, since the it exhibits way too many false
positives, but it will be reenabled as soon as possible.


	New imported features from astroid into pyreverse: pyreverse.inspector.Project,
pyreverse.inspector.project_from_files and pyreverse.inspector.interfaces.

These were moved since they didn’t belong in astroid.



	Enable misplaced-future for Python 3. Closes issue #580.


	Add a new error, ‘nonlocal-and-global’, which is emitted when a
name is found to be both nonlocal and global in the same scope.
Closes issue #581.


	ignored-classes option can work with qualified names (ignored-classes=optparse.Values)
Closes issue #297.


	ignored-modules can work with qualified names as well as with Unix pattern
matching for recursive ignoring. Closes issues #244.


	Improve detection of relative imports in non-packages, as well as importing
missing modules with a relative import from a package.


	Don’t emit no-init if not all the bases from a class are known.
Closes issue #604.


	–no-space-check option accepts empty-line as a possible option.
Closes issue #541.


	–generate-rcfile generates by default human readable symbols
for the –disable option. Closes issue #608.


	Improved the not-in-loop checker to properly detect more cases.


	Add a new error, ‘continue-in-finally’, which is emitted when
the continue keyword is found inside a finally clause, which
is a SyntaxError.


	The –zope flag is deprecated and it is slated for removal
in Pylint 1.6.

The reason behind this removal is the fact that it’s a specialized
flag and there are solutions for the original problem:
use –generated-members with the members that causes problems
when using Zope or add AST transforms tailored to the zope
project.

At the same time, –include-ids and –symbols will also be removed
in Pylint 1.6. Closes issue #570.



	missing-module-attribute was removed and the corresponding
CLI option, required-attributes, which is slated for removal
in Pylint 1.6.


	missing-reversed-argument was removed.

The reason behind this is that this kind of errors should be
detected by the type checker for all the builtins and not
as a special case for the reversed builtin. This will happen
shortly in the future.



	–comment flag is obsolete and it will be removed in Pylint 1.6.


	–profile flag is obsolete and it will be removed in Pylint 1.6.


	Add a new error, ‘misplaced-bare-raise’.

The error is used when a bare raise is not used inside an except clause.
This can generate a RuntimeError in Python, if there are no active exceptions
to be reraised. While it works in Python 2 due to the fact that the exception
leaks outside of the except block, it’s nevertheless a behaviour that
an user shouldn’t depend upon, since it’s not obvious to the reader of the code
what exception will be raised and it will not be compatible with Python 3 anyhow.
Closes issue #633.



	Bring logilab-common’s ureports into pylint.reporters.

With this change, we moved away from depending on logilab-common,
having in Pylint all the components that were used from logilab-common.
The API should be considered an implementation detail and can change at
some point in the future.
Closes issue #621.



	reimported is emitted for reimported objects on the same line.

Closes issue #639.



	Abbreviations of command line options are not supported anymore.

Using abbreviations for CLI options was never considered to be
a feature of pylint, this fact being only a side effect of using optparse.
As this was the case, using –load-plugin or other abbreviation
for –load-plugins never actually worked, while it also didn’t raise
an error. Closes issue #424.



	Add a new error, ‘nonlocal-without-binding’

The error is emitted on Python 3 when a nonlocal name is not bound
to any variable in the parents scopes. Closes issue #582.



	
	‘deprecated-module’ can be shown for modules which aren’t

	available. Closes issue #362.







	Don’t consider a class abstract if its members can’t
be properly inferred.

This fixes a false positive related to abstract-class-instantiated.
Closes issue #648.



	Add a new checker for the async features added by PEP 492.


	Add a new error, ‘yield-inside-async-function’, emitted on
Python 3.5 and upwards when the yield statement is found inside
a new coroutine function (PEP 492).


	Add a new error, ‘not-async-context-manager’, emitted when
an async context manager block is used with an object which doesn’t
support this protocol (PEP 492).


	Add a new convention warning, ‘singleton-comparison’, emitted when
comparison to True, False or None is found.


	Don’t emit ‘assigning-non-slot’ for descriptors. Closes issue #652.


	Add a new error, ‘repeated-keyword’, when a keyword argument is passed
multiple times into a function call.

This is similar with redundant-keyword-arg, but it’s mildly different
that it needs to be a separate error.



	–enable=all can now be used. Closes issue #142.


	Add a new convention message, ‘misplaced-comparison-constant’,
emitted when a constant is placed in the left hand side of a comparison,
as in ‘5 == func()’. This is also called Yoda condition, since the
flow of code reminds of the Star Wars green character, conditions usually
encountered in languages with variabile assignments in conditional
statements.


	Add a new convention message, ‘consider-using-enumerate’, which is
emitted when code that uses range and len for iterating is encountered.
Closes issue #684.


	Added two new refactoring messages, ‘no-classmethod-decorator’ and
‘no-staticmethod-decorator’, which are emitted when a static method or a class
method is declared without using decorators syntax.

Closes issue #675.











What’s New in Pylint 1.4.3?

Release date: 2015-03-14



	Remove three warnings: star-args, abstract-class-little-used,
abstract-class-not-used. These warnings don’t add any real value
and they don’t imply errors or problems in the code.


	Added a new option for controlling the peephole optimizer in astroid.
The option --optimize-ast will control the peephole optimizer,
which is used to optimize a couple of AST subtrees. The current problem
solved by the peephole optimizer is when multiple joined strings,
with the addition operator, are encountered. If the numbers of such
strings is high enough, Pylint will then fail with a maximum recursion
depth exceeded error, due to its visitor architecture. The peephole
just transforms such calls, if it can, into the final resulting string
and this exhibit a problem, because the visit_binop method stops being
called (in the optimized AST it will be a Const node).










What’s New in Pylint 1.4.2?

Release date: 2015-03-11



	Don’t require a docstring for empty modules. Closes issue #261.


	Fix a false positive with too-few-format-args string warning,
emitted when the string format contained a normal positional
argument (‘{0}’), mixed with a positional argument which did
an attribute access (‘{0.__class__}’).
Closes issue #463.


	Take in account all the methods from the ancestors
when checking for too-few-public-methods. Closes issue #471.


	Catch enchant errors and emit ‘invalid-characters-in-docstring’
when checking for spelling errors. Closes issue #469.


	Use all the inferred statements for the super-init-not-called
check. Closes issue #389.


	Add a new warning, ‘unichr-builtin’, emitted by the Python 3
porting checker, when the unichr builtin is found. Closes issue #472.


	Add a new warning, ‘intern-builtin’, emitted by the Python 3
porting checker, when the intern builtin is found. Closes issue #473.


	Add support for editable installations.


	The HTML output accepts the –msg-template option. Patch by
Dan Goldsmith.


	Add ‘map-builtin-not-iterating’ (replacing ‘implicit-map-evaluation’),
‘zip-builtin-not-iterating’, ‘range-builtin-not-iterating’, and
‘filter-builtin-not-iterating’ which are emitted by –py3k when the
appropriate built-in is not used in an iterating context (semantics
taken from 2to3).


	Add a new warning, ‘unidiomatic-typecheck’, emitted when an explicit
typecheck uses type() instead of isinstance(). For example,
type(x) == Y instead of isinstance(x, Y). Patch by Chris Rebert.
Closes issue #299.


	Add support for combining the Python 3 checker mode with the –jobs
flag (–py3k and –jobs). Closes issue #467.


	Add a new warning for the Python 3 porting checker, ‘using-cmp-argument’,
emitted when the cmp argument for the list.sort or sorted builtin
is encountered.


	Make the –py3k flag commutative with the -E flag. Also, this patch
fixes the leaks of error messages from the Python 3 checker when
the errors mode was activated. Closes issue #437.










What’s New in Pylint 1.4.1?

Release date: 2015-01-16



	Look only in the current function’s scope for bad-super-call.
Closes issue #403.


	Check the return of properties when checking for not-callable.
Closes issue #406.


	Warn about using the input() or round() built-ins for Python 3.
Closes issue #411.


	Proper abstract method lookup while checking for
abstract-class-instantiated. Closes issue #401.


	Use a mro traversal for finding abstract methods. Closes issue #415.


	Fix a false positive with catching-non-exception and tuples of
exceptions.


	Fix a false negative with raising-non-exception, when the raise used
an uninferrable exception context.


	Fix a false positive on Python 2 for raising-bad-type, when
raising tuples in the form ‘raise (ZeroDivisionError, None)’.


	Fix a false positive with invalid-slots-objects, where the slot entry
was an unicode string on Python 2. Closes issue #421.


	Add a new warning, ‘redundant-unittest-assert’, emitted when using
unittest’s methods assertTrue and assertFalse with constant value
as argument. Patch by Vlad Temian.


	Add a new JSON reporter, usable through -f flag.


	Add the method names for the ‘signature-differs’ and ‘argument-differs’
warnings. Closes issue #433.


	Don’t compile test files when installing.


	Fix a crash which occurred when using multiple jobs and the files
given as argument didn’t exist at all.










What’s New in Pylint 1.4.0?

Release date: 2014-11-23



	Added new options for controlling the loading of C extensions.
By default, only C extensions from the stdlib will be loaded
into the active Python interpreter for inspection, because they
can run arbitrary code on import. The option
–extension-pkg-whitelist can be used to specify modules
or packages that are safe to load.


	Change default max-line-length to 100 rather than 80


	Drop BaseRawChecker class which were only there for backward
compat for a while now


	Don’t try to analyze string formatting with objects coming from
function arguments. Closes issue #373.


	Port source code to be Python 2/3 compatible. This drops the
need for 2to3, but does drop support for Python 2.5.


	Each message now comes with a confidence level attached, and
can be filtered base on this level. This allows to filter out
all messages that were emitted even though an inference failure
happened during checking.


	Improved presenting unused-import message. Closes issue #293.


	Add new checker for finding spelling errors. New messages:
wrong-spelling-in-comment, wrong-spelling-in-docstring.
New options: spelling-dict, spelling-ignore-words.


	Add new ‘-j’ option for running checks in sub-processes.


	Added new checks for line endings if they are mixed (LF vs CRLF)
or if they are not as expected. New messages: mixed-line-endings,
unexpected-line-ending-format. New option: expected-line-ending-format.


	‘dangerous-default-value’ no longer evaluates the value of the arguments,
which could result in long error messages or sensitive data being leaked.
Closes issue #282


	Fix a false positive with string formatting checker, when
encountering a string which uses only position-based arguments.
Closes issue #285.


	Fix a false positive with string formatting checker, when using
keyword argument packing. Closes issue #288.


	Proper handle class level scope for lambdas.


	Handle ‘too-few-format-args’ or ‘too-many-format-args’ for format
strings with both named and positional fields. Closes issue #286.


	Analyze only strings by the string format checker. Closes issue #287.


	Properly handle nested format string fields. Closes issue #294.


	Don’t emit ‘attribute-defined-outside-init’ if the attribute
was set by a function call in a defining method. Closes issue #192.


	Properly handle unicode format strings for Python 2.
Closes issue #296.


	Don’t emit ‘import-error’ if an import was protected by a try-except,
which excepted ImportError.


	Fix an ‘unused-import’ false positive, when the error was emitted
for all the members imported with ‘from import’ form.
Closes issue #304.


	Don’t emit ‘invalid-name’ when assigning a name in an
ImportError handler. Closes issue #302.


	Don’t count branches from nested functions.


	Fix a false positive with ‘too-few-format-args’, when the format
strings contains duplicate manual position arguments.
Closes issue #310.


	fixme regex handles comments without spaces after the hash.
Closes issue #311.


	Don’t emit ‘unused-import’ when a special object is imported
(__all__, __doc__ etc.). Closes issue #309.


	Look in the metaclass, if defined, for members not found in the current
class. Closes issue #306.


	Don’t emit ‘protected-access’ if the attribute is accessed using
a property defined at the class level.


	Detect calls of the parent’s __init__, through a binded super() call.


	Check that a class has an explicitly defined metaclass before
emitting ‘old-style-class’ for Python 2.


	Emit ‘catching-non-exception’ for non-class nodes. Closes issue #303.


	Order of reporting is consistent.


	Add a new warning, ‘boolean-datetime’, emitted when an instance
of ‘datetime.time’ is used in a boolean context. Closes issue #239.


	Fix a crash which ocurred while checking for ‘method-hidden’,
when the parent frame was something different than a function.


	Generate html output for missing files. Closes issue #320.


	Fix a false positive with ‘too-many-format-args’, when the format
string contains mixed attribute access arguments and manual
fields. Closes issue #322.


	Extend the cases where ‘undefined-variable’ and ‘used-before-assignment’
can be detected. Closes issue #291.


	Add support for customising callback identifiers, by adding a new
‘–callbacks’ command line option. Closes issue #326.


	Add a new warning, ‘logging-format-interpolation’, emitted when .format()
string interpolation is used within logging function calls.


	Don’t emit ‘unbalanced-tuple-unpacking’ when the rhs of the assignment
is a variable length argument. Closes issue #329.


	Add a new warning, ‘inherit-non-class’, emitted when a class inherits
from something which is not a class. Closes issue #331.


	Fix another false positives with ‘undefined-variable’, where the variable
can be found as a class assignment and used in a function annotation.
Closes issue #342.


	Handle assignment of the string format method to a variable.
Closes issue #351.


	Support wheel packaging format for PyPi. Closes issue #334.


	Check that various built-ins that do not exist in Python 3 are not
used: apply, basestring, buffer, cmp, coerce, execfile, file, long
raw_input, reduce, StandardError, unicode, reload and xrange.


	Warn for magic methods which are not used in any way in Python 3:
__coerce__, __delslice__, __getslice__, __setslice__, __cmp__,
__oct__, __nonzero__ and __hex__.


	Don’t emit ‘assigning-non-slot’ when the assignment is for a property.
Closes issue #359.


	Fix for regression: ‘{path}’ was no longer accepted in ‘–msg-template’.


	Report the percentage of all messages, not just for errors and warnings.
Closes issue #319.


	‘too-many-public-methods’ is reported only for methods defined in a class,
not in its ancestors. Closes issue #248.


	‘too-many-lines’ disable pragma can be located on any line, not only the
first. Closes issue #321.


	Warn in Python 2 when an import statement is found without a
corresponding from __future__ import absolute_import.


	Warn in Python 2 when a non-floor division operation is found without
a corresponding from __future__ import division.


	Add a new option, ‘exclude-protected’, for excluding members
from the protected-access warning. Closes issue #48.


	Warn in Python 2 when using dict.iter*(), dict.view*(); none of these
methods are available in Python 3.


	Warn in Python 2 when calling an object’s next() method; Python 3 uses
__next__() instead.


	Warn when assigning to __metaclass__ at a class scope; in Python 3 a
metaclass is specified as an argument to the ‘class’ statement.


	Warn when performing parameter tuple unpacking; it is not supported in
Python 3.


	‘abstract-class-instantiated’ is also emitted for Python 2.
It was previously disabled.


	Add ‘long-suffix’ error, emitted when encountering the long suffix
on numbers.


	Add support for disabling a checker, by specifying an ‘enabled’
attribute on the checker class.


	Add a new CLI option, –py3k, for enabling Python 3 porting mode. This
mode will disable all other checkers and will emit warnings and
errors for constructs which are invalid or removed in Python 3.


	Add ‘old-octal-literal’ to Python 3 porting checker, emitted when
encountering octals with the old syntax.


	Add ‘implicit-map-evaluation’ to Python 3 porting checker, emitted
when encountering the use of map builtin, without explicit evaluation.










What’s New in Pylint 1.3.0?

Release date: 2014-07-26



	Allow hanging continued indentation for implicitly concatenated
strings. Closes issue #232.


	Pylint works under Python 2.5 again, and its test suite passes.


	Fix some false positives for the cellvar-from-loop warnings.
Closes issue #233.


	Return new astroid class nodes when the inferencer can detect that
that result of a function invocation on a type (like type or
abc.ABCMeta) is requested. Closes #205.


	Emit ‘undefined-variable’ for undefined names when using the
Python 3 metaclass= argument.


	Checkers respect priority now. Close issue #229.


	Fix a false positive regarding W0511. Closes issue #149.


	Fix unused-import false positive with Python 3 metaclasses (#143).


	Don’t warn with ‘bad-format-character’ when encountering
the ‘a’ format on Python 3.


	Add multiple checks for PEP 3101 advanced string formatting:
‘bad-format-string’, ‘missing-format-argument-key’,
‘unused-format-string-argument’, ‘format-combined-specification’,
‘missing-format-attribute’ and ‘invalid-format-index’.


	Issue broad-except and bare-except even if the number
of except handlers is different than 1. Fixes issue #113.


	Issue attribute-defined-outside-init for all cases, not just
for the last assignment. Closes issue #262.


	Emit ‘not-callable’ when calling properties. Closes issue #268.


	Fix a false positive with unbalanced iterable unpacking,
when encountering starred nodes. Closes issue #273.


	Add new checks, ‘invalid-slice-index’ and ‘invalid-sequence-index’
for invalid sequence and slice indices.


	Add ‘assigning-non-slot’ warning, which detects assignments to
attributes not defined in slots.


	Don’t emit ‘no-name-in-module’ for ignored modules.
Closes issue #223.


	Fix an ‘unused-variable’ false positive, where the variable is
assigned through an import. Closes issue #196.


	Definition order is considered for classes, function arguments
and annotations. Closes issue #257.


	Don’t emit ‘unused-variable’ when assigning to a nonlocal.
Closes issue #275.


	Do not let ImportError propagate from the import checker, leading to crash
in some namespace package related cases. Closes issue #203.


	Don’t emit ‘pointless-string-statement’ for attribute docstrings.
Closes issue #193.


	Use the proper mode for pickle when opening and writing the stats file.
Closes issue #148.


	Don’t emit hidden-method message when the attribute has been
monkey-patched, you’re on your own when you do that.


	Only emit attribute-defined-outside-init for definition within the same
module as the offended class, avoiding to mangle the output in some cases.


	Don’t emit ‘unnecessary-lambda’ if the body of the lambda call contains
call chaining. Closes issue #243.


	Don’t emit ‘missing-docstring’ when the actual docstring uses .format.
Closes issue #281.










What’s New in Pylint 1.2.1?

Release date: 2014-04-30



	Restore the ability to specify the init-hook option via the
configuration file, which was accidentally broken in 1.2.0.


	Add a new warning [bad-continuation] for badly indentend continued
lines.


	Emit [assignment-from-none] when the function contains bare returns.
Fixes BitBucket issue #191.


	Added a new warning for closing over variables that are
defined in loops. Fixes Bitbucket issue #176.


	Do not warn about u escapes in string literals when Unicode literals
are used for Python 2.*. Fixes BitBucket issue #151.


	Extend the checking for unbalanced-tuple-unpacking and
unpacking-non-sequence to instance attribute unpacking as well.


	Fix explicit checking of python script (1.2 regression, #219)


	Restore –init-hook, renamed accidentally into –init-hooks in 1.2.0
(#211)


	Add ‘indexing-exception’ warning, which detects that indexing
an exception occurs in Python 2 (behaviour removed in Python 3).










What’s New in Pylint 1.2.0?

Release date: 2014-04-18



	Pass the current python paths to pylint process when invoked via
epylint.  Fixes BitBucket issue #133.


	Add -i / –include-ids and -s / –symbols back as completely ignored
options. Fixes BitBucket issue #180.


	Extend the number of cases in which logging calls are detected. Fixes
bitbucket issue #182.


	Improve pragma handling to not detect pylint:* strings in non-comments.
Fixes BitBucket issue #79.


	Do not crash with UnknownMessage if an unknown message ID/name appears
in disable or enable in the configuration. Patch by Cole Robinson.
Fixes bitbucket issue #170.


	Add new warning ‘eval-used’, checking that the builtin function eval
was used.


	Make it possible to show a naming hint for invalid name by setting
include-naming-hint. Also make the naming hints configurable. Fixes
BitBucket issue #138.


	Added support for enforcing multiple, but consistent name styles for
different name types inside a single module; based on a patch written
by morbo@google.com.


	Also warn about empty docstrings on overridden methods; contributed
by sebastianu@google.com.


	Also inspect arguments to constructor calls, and emit relevant
warnings; contributed by sebastianu@google.com.


	Added a new configuration option logging-modules to make the list
of module names that can be checked for ‘logging-not-lazy’ et. al.
configurable; contributed by morbo@google.com.


	ensure init-hooks is evaluated before other options, notably load-plugins
(#166)


	Python 2.5 support restored: fixed small issues preventing pylint to run
on python 2.5. Bitbucket issues #50 and #62.


	bitbucket #128: pylint doesn’t crash when looking
for used-before-assignment in context manager
assignments.


	Add new warning, ‘bad-reversed-sequence’, for checking that the
reversed() builtin receive a sequence (implements __getitem__ and __len__,
without being a dict or a dict subclass) or an instance which implements
__reversed__.


	Mark file as a bad function when using python2 (closes #8).


	Add new warning ‘bad-exception-context’, checking
that raise … from … uses a proper exception context
(None or an exception).


	Enhance the check for ‘used-before-assignment’ to look
for ‘nonlocal’ uses.


	Emit ‘undefined-all-variable’ if a package’s __all__
variable contains a missing submodule (closes #126).


	Add a new warning ‘abstract-class-instantiated’ for checking
that abstract classes created with abc module and
with abstract methods are instantied.


	Do not warn about ‘return-arg-in-generator’ in Python 3.3+.


	Do not warn about ‘abstract-method’ when the abstract method
is implemented through assignment (#155).


	Improve cyclic import detection in the case of packages, patch by Buck
Golemon


	Add new warnings for checking proper class __slots__:
invalid-slots-object and invalid-slots.


	Search for rc file in ~/.config/pylintrc if ~/.pylintrc
doesn’t exists (#121)


	Don’t register the newstyle checker w/ python >= 3


	Fix unused-import false positive w/ augment assignment (#78)


	Fix access-member-before-definition false negative wrt aug assign (#164)


	Do not attempt to analyze non python file, eg .so file (#122)










What’s New in Pylint 1.1.0?

Release date: 2013-12-22



	Add new check for use of deprecated pragma directives “pylint:disable-msg”
or “pylint:enable-msg” (I0022, deprecated-pragma) which was previously
emmited as a regular warn().


	Avoid false used-before-assignment for except handler defined
identifier used on the same line (#111).


	Combine ‘no-space-after-operator’, ‘no-space-after-comma’ and
‘no-space-before-operator’ into a new warning ‘bad-whitespace’.


	Add a new warning ‘superfluous-parens’ for unnecessary
parentheses after certain keywords.


	Fix a potential crash in the redefine-in-handler warning
if the redefined name is a nested getattr node.


	Add a new option for the multi-statement warning to
allow single-line if statements.


	Add ‘bad-context-manager’ error, checking that ‘__exit__’
special method accepts the right number of arguments.


	Run pylint as a python module ‘python -m pylint’ (anatoly techtonik).


	Check for non-exception classes inside an except clause.


	epylint support options to give to pylint after the file to analyze and
have basic input validation (bitbucket #53 and #54), patches provided by
felipeochoa and Brian Lane.


	Added a new warning, ‘non-iterator-returned’, for non-iterators
returned by ‘__iter__’.


	Add new checks for unpacking non-sequences in assignments
(unpacking-non-sequence) as well as unbalanced tuple unpacking
(unbalanced-tuple-unpacking).


	useless-else-on-loop not emited if there is a break in the
else clause of inner loop (#117).


	don’t mark input as a bad function when using python3 (#110).


	badly-implemented-container caused several problems in its
current implementation. Deactivate it until we have something
better. See #112 for instance.


	Use attribute regexp for properties in python3, as in python2


	Create the PYLINTHOME directory when needed, it might fail and lead to
spurious warnings on import of pylint.config.


	Fix setup.py so that pylint properly install on Windows when using python3


	Various documentation fixes and enhancements


	Fix issue #55 (false-positive trailing-whitespace on Windows)










What’s New in Pylint 1.0.0?

Release date: 2013-08-06



	Add check for the use of ‘exec’ function


	New –msg-template option to control output, deprecating “msvc” and
“parseable” output formats as well as killing –include-ids and –symbols
options


	Do not emit [fixme] for every line if the config value ‘notes’
is empty, but [fixme] is enabled.


	Emit warnings about lines exceeding the column limit when
those lines are inside multiline docstrings.


	Do not double-check parameter names with the regex for parameters and
inline variables.


	Added a new warning missing-final-newline (C0304) for files missing
the final newline.


	Methods that are decorated as properties are now treated as attributes
for the purposes of name checking.


	Names of derived instance class member are not checked any more.


	Names in global statements are now checked against the regular
expression for constants.


	For toplevel name assignment, the class name regex will be used if
pylint can detect that value on the right-hand side is a class
(like collections.namedtuple()).


	Simplified invalid-name message


	Added a new warning invalid-encoded-data (W0512) for files that
contain data that cannot be decoded with the specified or
default encoding.


	New warning bad-open-mode (W1501) for calls to open (or file) that
specify invalid open modes (Original implementation by Sasha Issayev).


	New warning old-style-class (C1001) for classes that do not have any
base class.


	Add new name type ‘class_attribute’ for attributes defined
in class scope. By default, allow both const and variable names.


	New warning trailing-whitespace (C0303) that warns about
trailing whitespace.


	Added a new warning unpacking-in-except (W0712) about unpacking
exceptions in handlers, which is unsupported in Python 3.


	Add a configuration option for missing-docstring to
optionally exempt short functions/methods/classes from
the check.


	Add the type of the offending node to missing-docstring
and empty-docstring.


	New utility classes for per-checker unittests in testutils.py


	Do not warn about redefinitions of variables that match the
dummy regex.


	Do not treat all variables starting with _ as dummy variables,
only _ itself.


	Make the line-too-long warning configurable by adding a regex for lines
for with the length limit should not be enforced


	Do not warn about a long line if a pylint disable
option brings it above the length limit


	Do not flag names in nested with statements as undefined.


	Added a new warning ‘old-raise-syntax’ for the deprecated syntax
raise Exception, args


	Support for PEP 3102 and new missing-kwoa (E1125) message for missing
mandatory keyword argument (logilab.org’s #107788)


	Fix spelling of max-branchs option, now max-branches


	Added a new base class and interface for checkers that work on the
tokens rather than the syntax, and only tokenize the input file
once.


	Follow astng renaming to astroid


	bitbucket #37: check for unbalanced unpacking in assignments


	bitbucket #25: fix incomplete-protocol false positive for read-only
containers like tuple


	bitbucket #16: fix False positive E1003 on Python 3 for argument-less super()


	bitbucket #6: put back documentation in source distribution


	bitbucket #15: epylint shouldn’t hang anymore when there is a large
output on pylint’stderr


	bitbucket #7: fix epylint w/ python3


	bitbucket #3: remove string module from the default list of deprecated
modules










What’s New in Pylint 0.28.0?

Release date: 2013-04-25



	bitbucket #1: fix “dictionary changed size during iteration” crash


	#74013: new E1310[bad-str-strip-call] message warning when a call to a
{l,r,}strip method contains duplicate characters (patch by Torsten Marek)


	#123233: new E0108[duplicate-argument-name] message reporting duplicate
argument names


	#81378: emit W0120[useless-else-on-loop] for loops without break


	#124660: internal dependencies should not appear in external dependencies
report


	#124662: fix name error causing crash when symbols are included in output
messages


	#123285: apply pragmas for warnings attached to lines to physical source
code lines


	#123259: do not emit E0105 for yield expressions inside lambdas


	#123892: don’t crash when attempting to show source code line that can’t
be encoded with the current locale settings


	Simplify checks for dangerous default values by unifying tests for all
different mutable compound literals.


	Improve the description for E1124[redundant-keyword-arg]










What’s New in Pylint 0.27.0?

Release date: 2013-02-26



	#20693: replace pylint.el by Ian Eure version (patch by J.Kotta)


	#105327: add support for –disable=all option and deprecate the
‘disable-all’ inline directive in favour of ‘skip-file’ (patch by
A.Fayolle)


	#110840: add messages I0020 and I0021 for reporting of suppressed
messages and useless suppression pragmas. (patch by Torsten Marek)


	#112728: add warning E0604 for non-string objects in __all__
(patch by Torsten Marek)


	#120657: add warning W0110/deprecated-lambda when a map/filter
of a lambda could be a comprehension (patch by Martin Pool)


	#113231: logging checker now looks at instances of Logger classes
in addition to the base logging module. (patch by Mike Bryant)


	#111799: don’t warn about octal escape sequence, but warn about o
which is not octal in Python (patch by Martin Pool)


	#110839: bind <F5> to Run button in pylint-gui


	#115580: fix erroneous W0212 (access to protected member) on super call
(patch by Martin Pool)


	#110853: fix a crash when an __init__ method in a base class has been
created by assignment rather than direct function definition (patch by
Torsten Marek)


	#110838: fix pylint-gui crash when include-ids is activated (patch by
Omega Weapon)


	#112667: fix emission of reimport warnings for mixed imports and extend
the testcase (patch by Torsten Marek)


	#112698: fix crash related to non-inferable __all__ attributes and
invalid __all__ contents (patch by Torsten Marek)


	Python 3 related fixes:


	
	#110213: fix import of checkers broken with python 3.3, causing

	“No such message id W0704” breakage







	#120635: redefine cmp function used in pylint.reporters


	Include full warning id for I0020 and I0021 and make sure to flush
warnings after each module, not at the end of the pylint run.
(patch by Torsten Marek)


	Changed the regular expression for inline options so that it must be
preceeded by a # (patch by Torsten Marek)


	Make dot output for import graph predictable and not depend
on ordering of strings in hashes. (patch by Torsten Marek)


	Add hooks for import path setup and move pylint’s sys.path
modifications into them. (patch by Torsten Marek)










What’s New in Pylint 0.26.0?

Release date: 2012-10-05



	#106534: add –ignore-imports option to code similarity checking
and ‘symilar’ command line tool (patch by Ry4an Brase)


	#104571: check for anomalous backslash escape, introducing new
W1401 and W1402 messages (patch by Martin Pool)


	#100707: check for boolop being used as exception class, introducing
new W0711 message (patch by Tim Hatch)


	#4014: improve checking of metaclass methods first args, introducing
new C0204 message (patch by lothiraldan@gmail.com finalized by sthenault)


	#4685: check for consistency of a module’s __all__ variable,
introducing new E0603 message


	#105337: allow custom reporter in output-format (patch by Kevin Jing Qiu)


	#104420: check for protocol completness and avoid false R0903
(patch by Peter Hammond)


	#100654: fix grammatical error for W0332 message (using ‘l’ as
long int identifier)


	#103656: fix W0231 false positive for missing call to object.__init__
(patch by lothiraldan@gmail.com)


	#63424: fix similarity report disabling by properly renaming it to RP0801


	#103949: create a console_scripts entry point to be used by
easy_install, buildout and pip


	fix cross-interpreter issue (non compatible access to __builtins__)


	stop including tests files in distribution, they causes crash when
installed with python3 (#72022, #82417, #76910)










What’s New in Pylint 0.25.2?

Release date: 2012-07-17



	#93591: Correctly emit warnings about clobbered variable names when an
except handler contains a tuple of names instead of a single name.
(patch by tmarek@google.com)


	#7394: W0212 (access to protected member) not emited on assigments
(patch by lothiraldan@gmail.com)


	#18772; no prototype consistency check for mangled methods (patch by
lothiraldan@gmail.com)


	#92911: emit W0102 when sets are used as default arguments in functions
(patch by tmarek@google.com)


	#77982: do not emit E0602 for loop variables of comprehensions
used as argument values inside a decorator (patch by tmarek@google.com)


	#89092: don’t emit E0202 (attribute hiding a method) on @property methods


	#92584: fix pylint-gui crash due to internal API change


	#87192: fix crash when decorators are accessed through more than one dot
(for instance @a.b is fine, @a.b.c crash)


	#88914: fix parsing of –generated-members options, leading to crash
when using a regexp value set


	fix potential crashes with utils.safe_infer raising InferenceError










What’s New in Pylint 0.25.1?

Release date: 2011-12-08



	#81078: Warn if names in  exception handlers clobber overwrite
existing names (patch by tmarek@google.com)


	#81113: Fix W0702 messages appearing with the wrong line number.
(patch by tmarek@google.com)


	#50461, #52020, #51222: Do not issue warnings when using 2.6’s
property.setter/deleter functionality (patch by dneil@google.com)


	#9188, #4024: Do not trigger W0631 if a loop variable is assigned
in the else branch of a for loop.










What’s New in Pylint 0.25.0?

Release date: 2011-10-7



	#74742: make allowed name for first argument of class method configurable
(patch by Google)


	#74087: handle case where inference of a module return YES; this avoid
some cases of “TypeError: ‘_Yes’ object does not support indexing” (patch
by Google)


	#74745: make “too general” exception names configurable (patch by Google)


	#74747: crash occurs when lookup up a special attribute in class scope
(patch by google)


	#76920: crash if on eg “pylint –rcfile” (patch by Torsten Marek)


	#77237: warning for E0202 may be very misleading


	#73941: HTML report messages table is badly rendered










What’s New in Pylint 0.24.0?

Release date: 2011-07-18



	#69738: add regular expressions support for “generated-members”


	ids of logging and string_format checkers have been changed:
logging: 65 -> 12, string_format: 99 -> 13
Also add documentation to say that ids of range 1-50 shall be reserved
to pylint internal checkers


	#69993: Additional string format checks for logging module:
check for missing arguments, too many arguments, or invalid string
formats in the logging checker module. Contributed by Daniel Arena


	#69220: add column offset to the reports. If you’ve a custom reporter,
this change may break it has now location gain a new item giving the
column offset.


	#60828: Fix false positive in reimport check


	#70495: absolute imports fail depending on module path (patch by Jacek Konieczny)


	#22273: Fix –ignore option documentation to match reality










What’s New in Pylint 0.23.0?

Release date: 2011-01-11



	documentation update, add manpages


	several performance improvements


	finalize python3 support


	new W0106 warning ‘Expression “%s” is assigned to nothing’


	drop E0501 and E0502 messages about wrong source encoding: not anymore
interesting since it’s a syntax error for python >= 2.5 and we now only
support this python version and above.


	don’t emit W0221 or W0222 when methods as variable arguments (eg *arg
and/or **args). Patch submitted by Charles Duffy.










What’s New in Pylint 0.22.0?

Release date: 2010-11-15



	python versions: minimal python3.x support; drop python < 2.5 support










What’s New in Pylint 0.21.4?

Release date: 2010-10-27



	fix #48066: pylint crashes when redirecting output containing non-ascii characters


	fix #19799: “pylint -blah” exit with status 2


	update documentation










What’s New in Pylint 0.21.3?

Release date: 2010-09-28



	restored python 2.3 compatibility. Along with logilab-astng
0.21.3 and logilab-common 0.52, this will much probably be the
latest release supporting python < 2.5.










What’s New in Pylint 0.21.2?

Release date: 2010-08-26



	fix #36193: import checker raise exception on cyclic import


	fix #28796: regression in –generated-members introduced pylint 0.20


	some documentation cleanups










What’s New in Pylint 0.21.1?

Release date: 2010-06-04



	fix #28962: pylint crash with new options, due to missing stats data while
writing the Statistics by types report


	updated man page to 0.21 or greater command line usage (fix debian #582494)










What’s New in Pylint 0.21.0?

Release date: 2010-05-11



	command line updated (closes #9774, #9787, #9992, #22962):


	all enable-* / disable-* options have been merged into –enable / –disable


	BACKWARD INCOMPATIBLE CHANGE: short name of –errors-only becomes -E, -e being
affected to –enable


	pylint –help output much simplified, with –long-help available to get the
complete one


	revisited gui, thanks to students from Toronto university (they are great
contributors to this release!)


	fix #21591: html reporter produces no output if reports is set to ‘no’


	fix #4581: not Missing docstring (C0111) warning if a method is overridden


	fix #4683: Non-ASCII characters count double if utf8 encode


	fix #9018: when using defining-attr-method, method order matters


	fix #4595: Comma not followed by a space should not occurs on trailing comma
in list/tuple/dict definition


	fix #22585: [Patch] fix man warnings for pyreverse.1 manpage


	fix #20067: AttributeError: ‘NoneType’ object has no attribute ‘name’ with with










What’s New in Pylint 0.20.0?

Release date: 2010-03-01



	fix #19498: fix windows batch file


	fix #19339: pylint.el : non existing py-mod-map
(closes Debian Bug report logs - #475939)


	implement #18860, new W0199 message on assert (a, b)


	implement #9776, ‘W0150’ break or return statement in finally block may
swallow exception.


	fix #9263, __init__ and __new__ are checked for unused arguments


	fix #20991, class scope definitions ignored in a genexpr


	fix #5975, Abstract intermediate class not recognized as such


	fix #5977, yield and return statement have their own counters, no more R0911
(Too many return statements) when a function have many yield stamtements


	implement #5564, function / method arguments with leading “_” are ignored in
arguments / local variables count.


	implement #9982, E0711 specific error message when raising NotImplemented


	remove –cache-size option










What’s New in Pylint 0.19.0?

Release date: 2009-12-18



	implement #18947, #5561: checker for function arguments


	include James Lingard string format checker


	include simple message (ids) listing by Vincent Férotin (#9791)


	–errors-only does not hide fatal error anymore


	include james Lingard patches for ++/– and duplicate key in dicts


	include James Lingard patches for function call arguments checker


	improved flymake code and doc provided by Derek Harland


	refactor and fix the imports checker


	fix #18862: E0601 false positive with lambda functions


	fix #8764: More than one statement on a single line false positive with
try/except/finally


	fix #9215: false undefined variable error in lambda function


	fix for w0108 false positive (Nathaniel)


	fix test/fulltest.sh


	#5821 added a utility function to run pylint in another process (patch provide by Vincent Férotin)










What’s New in Pylint 0.18.0?

Release date: 2009-03-25



	tests ok with python 2.4, 2.5, 2.6. 2.3 not tested


	fix #8687, W0613 false positive on inner function


	fix #8350, C0322 false positive on multi-line string


	fix #8332: set E0501 line no to the first line where non ascii character
has been found


	avoid some E0203 / E0602 false negatives by detecting respectively
AttributeError / NameError


	implements #4037: don’t issue W0142 (* or ** magic) when they are barely
passed from /* arguments


	complete #5573: more complete list of special methods, also skip W0613
for python internal method


	don’t show information messages by default


	integration of Yuen Ho Wong’s patches on emacs lisp files










What’s New in Pylint 0.17.0?

Release date: 2009-03-19



	semicolon check : move W0601 to W0301


	remove rpython : remove all rpython checker, modules and tests


	astng 0.18 compatibility: support for _ast module modifies interfaces










What’s New in Pylint 0.16.0?

Release date: 2009-01-28



	change [en|dis]able-msg-cat options: only accept message categories
identified by their first letter (eg IRCWEF) without the need for comma
as separator


	add epylint.bat script to fix Windows installation


	setuptools/easy_install support


	include a modified version of Maarten ter Huurne patch to avoid W0613
warning on arguments from overridden method


	implement #5575  drop dumb W0704 message) by adding W0704 to ignored
messages by default


	new W0108 message, checking for suspicious lambda (provided by  Nathaniel
Manista)


	fix W0631, false positive reported by Paul Hachmann


	fix #6951: false positive with W0104


	fix #6949


	patches by Mads Kiilerich:


	implement #4691, make pylint exits with a non zero return
status if any messages other then Information are issued


	fix #3711, #5626 (name resolution bug w/ decorator and class members)


	fix #6954










What’s New in Pylint 0.15.2?

Release date: 2008-10-13



	fix #5672: W0706 weirdness ( W0706 removed )


	fix #5998: documentation points to wrong url for mailing list


	fix #6022: no error message on wrong module names


	fix #6040: pytest doesn’t run test/func_test.py










What’s New in Pylint 0.15.1?

Release date: 2008-09-15



	fix #4910: default values are missing in manpage


	fix #5991: missing files in 0.15.0 tarball


	fix #5993: epylint should work with python 2.3










What’s New in Pylint 0.15.0?

Release date: 2008-09-10



	include pyreverse package and class diagram generation


	included Stefan Rank’s patch to deal with 2.4 relative import


	included Robert Kirkpatrick’s tutorial and typos fixes


	fix bug in reenabling message


	fix #2473: invoking pylint on __init__.py (hopefully)


	typecheck: acquired-members option has been dropped in favor of the more
generic generated-members option. If the zope option is set, the behaviour
is now to add some default values to generated-members.


	flymake integration: added bin/epylint and elisp/pylint-flymake.el










What’s New in Pylint 0.14.0?

Release date: 2008-01-14



	fix #3733: Messages (dis)appear depending on order of file names


	fix #4026: pylint.el should require compile


	fix a bug in colorized reporter, spotted by Dave Borowitz


	applied patch from Stefan Rank to avoid W0410 false positive when
multiple “from __future__” import statements


	implement #4012: flag back tick as deprecated (new W0333 message)


	new ignored-class option on typecheck checker allowing to skip members
checking based on class name (patch provided by Thomas W Barr)










What’s New in Pylint 0.13.2?

Release date: 2007-06-07



	fix disable-checker option so that it won’t accidentally enable the
rpython checker which is disabled by default


	added note about the gedit plugin into documentation










What’s New in Pylint 0.13.1?

Release date: 2007-03-02



	fix some unexplained 0.13.0 packaging issue which led to a bunch of
files missing from the distribution










What’s New in Pylint 0.13.0?

Release date: 2007-02-28



	new RPython (Restricted Python) checker for PyPy fellow or people
wanting to get a compiled version of their python program using the
translator of the PyPy project. For more information about PyPy or
RPython, visit http://codespeak.net/pypy/


	new E0104 and E0105 messages introduced to respectively warn about
“return” and “yield” outside function or method


	new E0106 message when “yield” and “return something” are mixed in a
function or method


	new W0107 message for unnecessary pass statement


	new W0614 message to differentiate between unused import X and
unused from X import * (#3209, patch submitted by Daniel Drake)


	included Daniel Drake’s patch to have a different message E1003 instead of
E1001 when a missing member is found but an inference failure has been
detected


	msvs reporter for Visual Studio line number reporting (#3285)


	allow disable-all option inline (#3218, patch submitted by Daniel Drake)


	–init-hook option to call arbitrary code necessary to set
environment (eg sys.path) (#3156)


	One more Daniel’s patch fixing a command line option parsing
problem, this’ll definitely be the DDrake release :)


	fix #3184: crashes on “return” outside function


	fix #3205: W0704 false positive


	fix #3123: W0212 false positive on static method


	fix #2485: W0222 false positive


	fix #3259: when a message is explicitly enabled, check the checker
emitting it is enabled










What’s New in Pylint 0.12.2?

Release date: 2006-11-23



	fix #3143: W0233 bug w/ YES objects


	fix #3119: Off-by-one error counting lines in a file


	fix #3117: ease sys.stdout overriding for reporters


	fix #2508: E0601 false positive with lambda


	fix #3125: E1101 false positive and a message duplication. Only the last part
is actually fixed since the initial false positive is due to dynamic setting of
attributes on the decimal.Context class.


	fix #3149: E0101 false positives and introduced E0100 for generator __init__
methods


	fixed some format checker false positives










What’s New in Pylint 0.12.1?

Release date: 2006-09-25



	fixed python >= 2.4 format false positive with multiple lines statement


	fixed some 2.5 issues


	fixed generator expression scope bug (depends on astng 0.16.1)


	stop requiring __revision__










What’s New in Pylint 0.12.0?

Release date: 2006-08-10



	usability changes:



	parseable, html and color options are now handled by a single
output-format option


	enable-<checkerid> and disable-all options are now handled by
two (exclusive) enable-checker and disable-checker options
taking a comma separated list of checker names as value


	renamed debug-mode option to errors-only









	started a reference user manual


	new W0212 message for access to protected member from client code
(close #14081)


	new W0105 and W0106 messages extracted from W0104 (statement seems
to have no effect) respectively when the statement is actually string
(that’s sometimes used instead of comments for documentation) or an
empty  statement generated by a useless semicolon


	reclassified W0302 to C0302


	fix so that global messages are not anymore connected to the last
analyzed module (close #10106)


	fix some bugs related to local disabling of messages


	fix cr/lf pb when generating the rc file on windows platforms










What’s New in Pylint 0.11.0?

Release date: 2006-04-19



	fix crash caused by the exceptions checker in some case


	fix some E1101 false positive with abstract method or classes defining
__getattr__


	dirty fix to avoid “_socketobject” has not “connect” member. The actual
problem is that astng isn’t able to understand the code used to create
socket.socket object with exec


	added an option in the similarity checker to ignore docstrings, enabled
by default


	included patch from Benjamin Niemann to allow block level
enabling/disabling of messages










What’s New in Pylint 0.10.0?

Release date: 2006-03-06



	WARNING, this release include some configuration changes (see below),
so you may have to check and update your own configuration file(s) if
you use one


	this release require the 0.15 version of astng or superior (it will save
you a lot of pylint crashes…)


	W0705 has been reclassified to E0701, and is now detecting more
inheriting problem, and a false positive when empty except clause is
following an Exception catch has been fixed (close #10422)


	E0212 and E0214 (metaclass/class method should have mcs/cls as first
argument have been reclassified to C0202 and C0203 since this not as
well established as “self” for instance method (E0213)


	W0224 has been reclassified into F0220 (failed to resolve interfaces
implemented by a class)


	a new typecheck checker, introducing the following checks:



	E1101, access to unexistent member (implements #10430), remove
the need of E0201 and so some options has been moved from the
classes checker to this one


	E1102, calling a non callable object


	E1111 and W1111 when an assignment is done on a function call but the
inferred function returns None (implements #10431)









	change in the base checker:



	checks module level and instance attribute names (new const-rgx
and attr-rgx configuration option) (implements #10209  and
#10440)


	list comprehension and generator expression variables have their
own regular expression  (the inlinevar-rgx option) (implements
#9146)


	the C0101 check with its min-name-length option has
been removed (this can be specified in the regxp after all…)


	W0103 and W0121 are now handled by the variables checker
(W0103 is now W0603 and W0604 has been splitted into different messages)


	W0131 and W0132 messages  have been reclassified to C0111 and
C0112 respectively


	new W0104 message on statement without effect









	regexp support for dummy-variables (dummy-variables-rgx option
replace dummy-variables) (implements #10027)


	better global statement handling, see W0602, W0603, W0604 messages
(implements #10344 and #10236)


	–debug-mode option, disabling all checkers without error message
and filtering others to only display error


	fixed some R0201 (method could be a function) false positive










What’s New in Pylint 0.9.0?

Release date: 2006-01-10



	a lot of updates to follow astng 0.14 API changes, so install
logilab-astng  0.14 or greater before using this version of pylint


	checker number 10 ! newstyle will search for problems regarding old
style / new style classes usage problems (rely on astng 0.14 new
style detection feature)


	new ‘load-plugins’ options to load additional pylint plugins (usable
from the command line or from a configuration file) (implements
#10031)


	check if a “pylintrc” file exists in the current working directory
before using the one specified in the PYLINTRC environment variable
or the default ~/.pylintrc or /etc/pylintrc


	fixed W0706 (Identifier used to raise an exception is assigned…)
false positive and reraising a catched exception instance


	fixed E0611 (No name get in module blabla) false positive when accessing
to a class’__dict__


	fixed some E0203 (“access to member before its definition”) false
positive


	fixed E0214 (“metaclass method first argument should be mcs) false
positive with staticmethod used on a metaclass


	fixed packaging which was missing the test/regrtest_data directory


	W0212 (method could be a function) has been reclassified in the
REFACTOR category as R0201, and is no more considerer when a method
overrides an abstract method from an ancestor class


	include module name in W0401 (wildcard import), as suggested by
Amaury


	when using the ‘–parseable’, path are written relative to the
current working directory if in a sub-directory of it (#9789)


	‘pylint –version’ shows logilab-astng and logilab-common versions


	fixed pylint.el to handle space in file names


	misc lint style fixes










What’s New in Pylint 0.8.1?

Release date: 2005-11-07



	fix “deprecated module” false positive when the code imports a
module whose name starts with a deprecated module’s name (close
#10061)


	fix “module has no name __dict__” false positive (close #10039)


	fix “access to undefined variable __path__” false positive (close
#10065)


	fix “explicit return in __init__” false positive when return is
actually in an inner function (close #10075)










What’s New in Pylint 0.8.0?

Release date: 2005-10-21



	check names imported from a module exists in the module (E0611),
patch contributed by Amaury Forgeot d’Arc


	print a warning (W0212) for methods that could be a function
(implements #9100)


	new –defining-attr-methods option on classes checker


	new –acquired-members option on the classes checker, used when
–zope=yes to avoid false positive on acquired attributes (listed
using this new option) (close #8616)


	generate one E0602 for each use of an undefined variable
(previously, only one for the first use but not for the following)
(implements #1000)


	make profile option saveable


	fix Windows .bat file,  patch contributed by Amaury Forgeot d’Arc


	fix one more false positive for E0601 (access before definition)
with for loop such as “for i in range(10): print i” (test
func_noerror_defined_and_used_on_same_line)


	fix false positive for E0201 (undefined member) when accessing to
__name__ on a class object


	fix astng checkers traversal order


	fix bug in format checker when parsing a file from a platform
using different new line characters (close #9239)


	fix encoding detection regexp


	fix –rcfile handling (support for –rcfile=file, close #9590)










What’s New in Pylint 0.7.0?

Release date: 2005-05-27



	WARNING: pylint is no longer a logilab subpackage. Users may have to
manually remove the old logilab/pylint directory.


	introduce a new –additional-builtins option to handle user defined
builtins


	–reports option has now -r as short alias, and -i for –include-ids


	fix a bug in the variables checker which may causing some false
positives when variables are defined and used within the same
statement (test func_noerror_defined_and_used_on_same_line)


	this time, real fix of the “disable-msg in the config file” problem,
test added to unittest_lint


	fix bug with –list-messages and python -OO


	fix possible false positive for W0201










What’s New in Pylint 0.6.4?

Release date: 2005-04-14



	allow to parse files without extension when a path is given on the
command line (test noext)


	don’t fail if we are unable to read an inline option  (e.g. inside a
module), just produce an information message (test func_i0010)


	new message E0103 for break or continue outside loop (close #8883,
test func_continue_not_in_loop)


	fix bug in the variables checker, causing non detection of some
actual name error (close #8884, test
func_nameerror_on_string_substitution)


	fix bug in the classes checker which was making pylint crash if
“object” is assigned in a class inheriting from it (test
func_noerror_object_as_class_attribute)


	fix problem with the similar checker when related options are
defined in a configuration file


	new –generate-man option to generate pylint’s man page (require the
latest logilab.common (>= 0.9.3)


	packaged (generated…) man page










What’s New in Pylint 0.6.3?

Release date: 2005-02-24



	fix scope problem which may cause false positive and true negative
on E0602


	fix problem with some options such as disable-msg causing error when
they are coming from the configuration file










What’s New in Pylint 0.6.2?

Release date: 2005-02-16



	fix false positive on E0201 (“access to undefined member”) with
metaclasses


	fix false positive on E0203 (“access to member before its
definition”) when attributes are defined in a parent class


	fix false positive on W0706 (“identifier used to raise an exception
assigned to…”)


	fix interpretation of “t” as value for the indent-string
configuration variable


	fix –rcfile so that –rcfile=pylintrc (only –rcfile pylintrc was
working in earlier release)


	new raw checker example in the examples/ directory










What’s New in Pylint 0.6.1?

Release date: 2005-02-04



	new –rcfile option to specify the configuration file without the
PYLINTRC environment variable


	added an example module for a custom pylint checker (see the
example/ directory)


	some fixes to handle fixes in common 0.9.1 (should however still working
with common 0.9.0, even if upgrade is recommended)










What’s New in Pylint 0.6.0?

Release date: 2005-01-20



	refix pylint emacs mode


	no more traceback when just typing “pylint”


	fix a bug which may cause crashes on resolving parent classes


	fix problems with the format checker: don’t chock on files
containing multiple CR, avoid C0322, C0323, C0324 false positives
with triple quoted string with quote inside


	correctly detect access to member defined latter in __init__ method


	now depends on common 0.8.1 to fix problem with interface resolution
(close #8606)


	new –list-msgs option describing available checkers and their
messages


	added windows specific documentation to the README file, contributed
by Brian van den Broek


	updated doc/features.txt (actually this file is now generated using
the –list-msgs option), more entries into the FAQ


	improved tests coverage










What’s New in Pylint 0.5.0?

Release date: 2004-10-19



	avoid to import analyzed modules !


	new Refactor and Convention message categories. Some Warnings have been
remaped into those new categories


	added “similar”, a tool to find copied and pasted lines of code,
both using a specific command line tool and integrated as a
pylint’s checker


	imports checker may report import dependencies as a dot graph


	new checker regrouping most Refactor detection (with some new metrics)


	more command line options storable in the configuration file


	fix bug with total / undocumented number of methods










What’s New in Pylint 0.4.2?

Release date: 2004-07-08



	fix pylint emacs mode


	fix classes checkers to handler twisted interfaces










What’s New in Pylint 0.4.1?

Release date: 2004-05-14



	fix the setup.py script to allow bdist_winst (well, the generated
installer has not been tested…) with the necessary
logilab/__init__.py file


	fix file naming convention as suggested by Andreas Amoroso


	fix stupid crash bug with bad method names










What’s New in Pylint 0.4.0?

Release date: 2004-05-10



	fix file path with –parsable


	–parsable option has been renamed to –parseable


	added patch from Andreas Amoroso to output message to files instead
of standard output


	added Run to the list of correct variable names


	fix variable names regexp and checking of local classes names


	some basic handling of metaclasses


	no-docstring-rgx apply now on classes too


	new option to specify a different regexp for methods than for
functions


	do not display the evaluation report when no statements has been
analysed


	fixed crash with a class nested in a method


	fixed format checker to deals with triple quoted string and
lines with code and comment mixed


	use logilab.common.ureports to layout reports










What’s New in Pylint 0.3.3?

Release date: 2004-02-17



	added a parsable text output, used when the –parsable option is
provided


	added an emacs mode using this output, available in the distrib’s
elisp directory


	fixed some typos in messages


	change include-ids options to yn, and allow it to be in the
configuration file


	do not chock on corrupted stats files


	fixed bug in the format checker which may stop pylint execution


	provide scripts for unix and windows to wrap the minimal pylint tk
gui










What’s New in Pylint 0.3.2?

Release date: 2003-12-23



	html-escape messages in the HTML reporter (bug reported by Juergen
Hermann)


	added “TODO” to the list of default note tags


	added “rexec” to the list of default deprecated modules


	fixed typos in some messages










What’s New in Pylint 0.3.1?

Release date: 2003-12-05



	bug fix in format and classes checkers


	remove print statement from imports checkers


	provide a simple tk gui, essentially useful for windows users










What’s New in Pylint 0.3.0?

Release date: 2003-11-20



	new exceptions checker, checking for string exception and empty
except clauses.


	imports checker checks for reimport of modules


	classes checker checks for calls to ancestor’s __init__ and abstract
method not overridden. It doesn’t complain anymore for unused import in
__init__ files, and provides a new option ignore-interface-methods,
useful when you’re using zope Interface implementation in your project


	base checker checks for black listed builtins call (controled by the
bad-functions option) and for use of * and **


	format checker checks for use of <> and “l” as long int marker


	major internal API changes


	use the rewrite of astng, based on compiler.ast


	added unique id for messages, as suggested by Wolfgang Grafen


	added unique id for reports


	can take multiple modules or files as argument


	new options command line options : –disable-msg, –enable-msg,
–help-msg, –include-ids, –reports, –disable-report, –cache-size


	–version shows the version of the python interpreter


	removed some options which are now replaced by [en|dis]able-msg, or
disable-report


	read disable-msg and enable-msg options in source files (should be
in comments on the top of the file, in the form
“# pylint: disable-msg=W0402”


	new message for modules importing themselves instead of the “cyclic
import” message


	fix bug with relative and cyclic imports


	fix bug in imports checker (cycle was not always detected)


	still fixes in format checker : don’t check comment and docstring,
check first line after an indent


	black and white list now apply to all identifiers, not only
variables,  so changed the configuration option from
(good|bad)-variable-names to (good|bad)-names


	added string, rexec and Bastion to the default list of deprecated
modules


	do not print redefinition warning for function/class/method defined
in mutually exclusive branches










What’s New in Pylint 0.2.1?

Release date: 2003-10-10



	added some documentation, fixed some typos


	set environment variable PYLINT_IMPORT to 1 during pylint execution.


	check that variables “imported” using the global statement exist


	indentation problems are now warning instead of errors


	fix checkers.initialize to try to load all files with a known python
extension (patch from wrobell)


	fix a bunch of messages


	fix sample configuration file


	fix the bad-construction option


	fix encoding checker


	fix format checker










What’s New in Pylint 0.2.0?

Release date: 2003-09-12



	new source encoding / FIXME checker (pep 263)


	new –zope option which trigger Zope import. Useful to check Zope
products code.


	new –comment option which enable the evaluation note comment
(disabled by default).


	a ton of bug fixes


	easy functional test infrastructure










What’s New in Pylint 0.1.2?

Release date: 2003-06-18



	bug fix release


	remove dependency to pyreverse










What’s New in Pylint 0.1.1?

Release date: 2003-06-01



	much more functionalities !










What’s New in Pylint 0.1?

Release date: 2003-05-19



	initial release













          

      

      

    

  

    
      
          
            
  
	
class article

	




A Beginner’s Guide to Code Standards in Python - Pylint Tutorial


	Author

	Robert Kirkpatrick





For a detailed description of Pylint, see http://www.pylint.org


Intro

Beginner to coding standards?  Pylint can be your guide to reveal what’s really
going on behind the scenes and help you to become a more aware programmer.

Sharing code is a rewarding endeavor.  Putting your code ‘out there’ can be
either an act of philanthropy, ‘coming of age’, or a basic extension of belief
in open source.  Whatever the motivation, your good intentions may not have the
desired outcome if people find your code hard to use or understand.  The Python
community has formalized some recommended programming styles to help everyone
write code in a common, agreed-upon style that makes the most sense for shared
code.  This style is captured in PEP-8 [http://www.python.org/dev/peps/pep-0008/].  Pylint can be a quick and easy way of
seeing if your code has captured the essence of PEP-8 and is therefore
‘friendly’ to other potential users.

Perhaps you’re not ready to share your code but you’d like to learn a bit more
about writing better code and don’t know where to start.  Pylint can tell you
where you may have run astray and point you in the direction to figure out what
you have done and how to do better.

This tutorial is all about approaching coding standards with little or no
knowledge of in-depth programming or the code standards themselves.  It’s the
equivalent of skipping the manual and jumping right in.

My command line prompt for these examples is:

robertk01 Desktop$








Getting Started

Running Pylint with no arguments will invoke the help dialogue and give you a
idea of the arguments available to you.  Do that now, i.e.:

robertk01 Desktop$ pylint
...
a bunch of stuff
...





A couple of the options that we’ll focus on here are:

Master:
  --generate-rcfile=<file>
Commands:
  --help-msg=<msg-id>
Commands:
  --help-msg=<msg-id>
Message control:
  --disable=<msg-ids>
Reports:
  --files-output=<y_or_n>
  --reports=<y_or_n>
  --output-format=<format>





Also pay attention to the last bit of help output.  This gives you a hint of what
Pylint is going to ‘pick on’:

Output:
   Using the default text output, the message format is :
  MESSAGE_TYPE: LINE_NUM:[OBJECT:] MESSAGE
  There are 5 kind of message types :
  * (C) convention, for programming standard violation
  * (R) refactor, for bad code smell
  * (W) warning, for python specific problems
  * (E) error, for much probably bugs in the code
  * (F) fatal, if an error occurred which prevented pylint from doing
  further processing.





When Pylint is first run on a fresh piece of code, a common complaint is that it
is too ‘noisy’.  The current default configuration is set to enforce all possible
warnings.  We’ll use some of the options I noted above to make it suit your
preferences a bit better (and thus make it ‘scream only when needed’).




Your First Pylint’ing

We’ll use a basic python script as fodder for our tutorial.  I borrowed
extensively from the code here: http://www.daniweb.com/code/snippet748.html
The starting code we will use is called simplecaeser.py and is here in its
entirety:

 1  #!/usr/bin/env python
 2
 3  import string
 4
 5  shift = 3
 6  choice = raw_input("would you like to encode or decode?")
 7  word = (raw_input("Please enter text"))
 8  letters = string.ascii_letters + string.punctuation + string.digits
 9  encoded = ''
10  if choice == "encode":
11      for letter in word:
12          if letter == ' ':
13              encoded = encoded + ' '
14          else:
15              x = letters.index(letter) + shift
16              encoded=encoded + letters[x]
17  if choice == "decode":
18      for letter in word:
19          if letter == ' ':
20              encoded = encoded + ' '
21          else:
22              x = letters.index(letter) - shift
23              encoded = encoded + letters[x]
24
25  print encoded





Let’s get started.

If we run this:

robertk01 Desktop$ pylint simplecaeser.py
No config file found, using default configuration
************* Module simplecaeser
C:  1, 0: Missing module docstring (missing-docstring)
W:  3, 0: Uses of a deprecated module 'string' (deprecated-module)
C:  5, 0: Invalid constant name "shift" (invalid-name)
C:  6, 0: Invalid constant name "choice" (invalid-name)
C:  7, 0: Invalid constant name "word" (invalid-name)
C:  8, 0: Invalid constant name "letters" (invalid-name)
C:  9, 0: Invalid constant name "encoded" (invalid-name)
C: 16,12: Operator not preceded by a space
            encoded=encoded + letters[x]
                   ^ (no-space-before-operator)


Report
======
19 statements analysed.

Duplication
-----------

+-------------------------+------+---------+-----------+
|                         |now   |previous |difference |
+=========================+======+=========+===========+
|nb duplicated lines      |0     |0        |=          |
+-------------------------+------+---------+-----------+
|percent duplicated lines |0.000 |0.000    |=          |
+-------------------------+------+---------+-----------+



Raw metrics
-----------

+----------+-------+------+---------+-----------+
|type      |number |%     |previous |difference |
+==========+=======+======+=========+===========+
|code      |21     |87.50 |21       |=          |
+----------+-------+------+---------+-----------+
|docstring |0      |0.00  |0        |=          |
+----------+-------+------+---------+-----------+
|comment   |1      |4.17  |1        |=          |
+----------+-------+------+---------+-----------+
|empty     |2      |8.33  |2        |=          |
+----------+-------+------+---------+-----------+



Statistics by type
------------------

+---------+-------+-----------+-----------+------------+---------+
|type     |number |old number |difference |%documented |%badname |
+=========+=======+===========+===========+============+=========+
|module   |1      |1          |=          |0.00        |0.00     |
+---------+-------+-----------+-----------+------------+---------+
|class    |0      |0          |=          |0.00        |0.00     |
+---------+-------+-----------+-----------+------------+---------+
|method   |0      |0          |=          |0.00        |0.00     |
+---------+-------+-----------+-----------+------------+---------+
|function |0      |0          |=          |0.00        |0.00     |
+---------+-------+-----------+-----------+------------+---------+



Messages by category
--------------------

+-----------+-------+---------+-----------+
|type       |number |previous |difference |
+===========+=======+=========+===========+
|convention |7      |7        |=          |
+-----------+-------+---------+-----------+
|refactor   |0      |0        |=          |
+-----------+-------+---------+-----------+
|warning    |1      |1        |=          |
+-----------+-------+---------+-----------+
|error      |0      |0        |=          |
+-----------+-------+---------+-----------+



Messages
--------

+-------------------------+------------+
|message id               |occurrences |
+=========================+============+
|invalid-name             |5           |
+-------------------------+------------+
|no-space-before-operator |1           |
+-------------------------+------------+
|missing-docstring        |1           |
+-------------------------+------------+
|deprecated-module        |1           |
+-------------------------+------------+



Global evaluation
-----------------
Your code has been rated at 5.79/10





Wow.  That’s a lot of stuff.  The first part is the ‘messages’ section while the
second part is the ‘report’ section.  There are two points I want to tackle here.

First point is that all the tables of statistics (i.e. the report) are a bit
overwhelming so I want to silence them.  To do that, I will use the
“–reports=n” option.


Tip

Many of Pylint’s commonly used command line options have shortcuts.
for example, “–reports=n” can be abbreviated to “-rn”. Pylint’s man page lists
all these shortcuts.



Second, previous experience taught me that the default output for the messages
needed a bit more info.  We can see the first line is:

"C:  1: Missing docstring (missing-docstring)"





This basically means that line 1 violates a convention ‘C’.  It’s telling me I
really should have a docstring.  I agree, but what if I didn’t fully understand
what rule I violated.  Knowing only that I violated a convention isn’t much help
if I’m a newbie. Another information there is the message symbol between parens,
missing-docstring here.

If I want to read up a bit more about that, I can go back to the
command line and try this:

robertk01 Desktop$ pylint --help-msg=missing-docstring
No config file found, using default configuration
:missing-docstring (C0111): *Missing docstring*
  Used when a module, function, class or method has no docstring. Some special
  methods like __init__ doesn't necessary require a docstring. This message
  belongs to the basic checker.





Yeah, ok. That one was a bit of a no-brainer but I have run into error messages
that left me with no clue about what went wrong, simply because I was unfamiliar
with the underlying mechanism of code theory.  One error that puzzled my newbie
mind was:

:too-many-instance-attributes (R0902): *Too many instance attributes (%s/%s)*





I get it now thanks to Pylint pointing it out to me.  If you don’t get that one,
pour a fresh cup of coffee and look into it - let your programmer mind grow!




The Next Step

Now that we got some configuration stuff out of the way, let’s see what we can
do with the remaining warnings.

If we add a docstring to describe what the code is meant to do that will help.
I’m also going to be a bit cowboy and ignore the deprecated-module message
because I like to take risks in life.  A deprecation warning means that future
versions of Python may not support that code so my code may break in the future.
There are 5 invalid-name messages that we will get to later.  Lastly, I violated the
convention of using spaces around an operator such as “=” so I’ll fix that too.
To sum up, I’ll add a docstring to line 2, put spaces around the = sign on line
16 and use the –disable=deprecated-module to ignore the deprecation warning.

Here is the updated code:

 1  #!/usr/bin/env python
 2  """This script prompts a user to enter a message to encode or decode
 3  using a classic Caeser shift substitution (3 letter shift)"""
 4
 5  import string
 6
 7  shift = 3
 8  choice = raw_input("would you like to encode or decode?")
 9  word = (raw_input("Please enter text"))
10  letters = string.ascii_letters + string.punctuation + string.digits
11  encoded = ''
12  if choice == "encode":
13      for letter in word:
14          if letter == ' ':
15              encoded = encoded + ' '
16          else:
17              x = letters.index(letter) + shift
18              encoded = encoded + letters[x]
19  if choice == "decode":
20      for letter in word:
21          if letter == ' ':
22              encoded = encoded + ' '
23          else:
24              x = letters.index(letter) - shift
25              encoded = encoded + letters[x]
26
27  print encoded





And here is what happens when we run it with our –disable=deprecated-module
option:

robertk01 Desktop$ pylint --reports=n --disable=deprecated-module simplecaeser.py
No config file found, using default configuration
************* Module simplecaeser
C:  7, 0: Invalid constant name "shift" (invalid-name)
C:  8, 0: Invalid constant name "choice" (invalid-name)
C:  9, 0: Invalid constant name "word" (invalid-name)
C: 10, 0: Invalid constant name "letters" (invalid-name)
C: 11, 0: Invalid constant name "encoded" (invalid-name)





Nice!  We’re down to just the invalid-name messages.

There are fairly well defined conventions around naming things like instance
variables, functions, classes, etc.  The conventions focus on the use of
UPPERCASE and lowercase as well as the characters that separate multiple words
in the name.  This lends itself well to checking via a regular expression, thus
the “should match (([A-Z_][A-Z1-9_]*)|(__.*__))$”.

In this case Pylint is telling me that those variables appear to be constants
and should be all UPPERCASE.  This rule is in fact a naming convention that is
specific to the folks at Logilab who created Pylint.  That is the way they have
chosen to name those variables.  You too can create your own in-house naming
conventions but for the purpose of this tutorial, we want to stick to the PEP-8
standard.  In this case, the variables I declared should follow the convention
of all lowercase.  The appropriate rule would be something like:
“should match [a-z_][a-z0-9_]{2,30}$”.  Notice the lowercase letters in the
regular expression (a-z versus A-Z).

If we run that rule using a –const-rgx=’[a-z_][a-z0-9_]{2,30}$’ option, it
will now be quite quiet:

robertk01 Desktop$ pylint --reports=n --disable=deprecated-module --const-rgx='[a-z_][a-z0-9_]{2,30}$'  simplecaeser.py
No config file found, using default configuration





Regular expressions can be quite a beast so take my word on this particular
example but go ahead and read up [http://docs.python.org/library/re.html] on them if you want.


Tip

It would really be a pain in the butt to have to use all these options
on the command line all the time.  That’s what the rc file is for.  We can
configure our Pylint to store our options for us so we don’t have to declare
them on the command line.  Using the rc file is a nice way of formalizing your
rules and quickly sharing them with others. Invoking pylint
--generate-rcfile will create a sample rcfile with all the options set and
explained in comments.



That’s it for the basic intro. More tutorials will follow.







          

      

      

    

  

    
      
          
            
  
Installation


Python packages

Pylint should be easily installable using pip.

python -m pip install pip








Source distribution installation

From the source distribution, extract the tarball, go to the extracted
directory and simply run

python setup.py install





Or you can install it in editable mode, using

python setup.py develop








Note for Windows users

On Windows, once you have installed Pylint, the command line usage is

pylint.bat [options] module_or_package





But this will only work if pylint.bat is either in the current
directory, or on your system path. (setup.py will install python.bat
to the Scripts subdirectory of your Python installation – e.g.
C:Python24Scripts.) You can do any of the following to solve this:


	Change to the appropriate directory before running pylint.bat


	Add the Scripts directory to your path statement in your autoexec.bat
file (this file is found in the root directory of your boot-drive)


	Create a ‘redirect’ batch file in a directory actually on your
systems path




To effect (2), simply append the appropriate directory name to the PATH=
statement in autoexec.bat. Be sure to use the Windows directory
separator of ‘;’ between entries. Then, once you have rebooted (this is
necessary so that the new path statement will take effect when
autoexec.bat is run), you will be able to invoke Pylint with
pylint.bat on the command line.

(3) is the best solution. Once done, you can call Pylint at the command
line without the .bat, just as do non-Windows users by typing:

pylint [options] module_or_package





To effect option (3), simply create a plain text file pylint.bat with
the single line:

C:\PythonDirectory\Scripts\pylint.bat





(where PythonDirectory is replaced by the actual Python installation
directory on your system – e.g. C:Python24Scriptspylint.bat).

Alternatively, you can run pylint using the -m flag, as in:

python -m pylint module_or_package











          

      

      

    

  

    
      
          
            
  
Running Pylint


Invoking Pylint

Pylint is meant to be called from the command line. The usage is

pylint [options] module_or_package





You should give Pylint the name of a python package or module. Pylint
will not import this package or module, though uses Python internals
to locate them and as such is subject to the same rules and configuration.
You should pay attention to your PYTHONPATH, since it is a common error
to analyze an installed version of a module instead of the
development version.

It is also possible to analyze python files, with a few
restrictions. The thing to keep in mind is that Pylint will try to
convert the file name to a module name, and only be able to process
the file if it succeeds.

pylint mymodule.py





should always work since the current working
directory is automatically added on top of the python path

pylint directory/mymodule.py





will work if directory is a python package (i.e. has an __init__.py
file or it is an implicit namespace package) or if “directory” is in the
python path.

For more details on this see the Frequently Asked Questions.

You can also start a thin gui around Pylint (require tkinter) by
typing

pylint-gui





This should open a window where you can enter the name of the package
or module to check, at Pylint messages will be displayed in the user
interface.

It is also possible to call Pylint from an other python program,
thanks to py_run() function in epylint module,
assuming Pylint options are stored in pylint_options string, as:

from pylint import epylint as lint
lint.py_run(pylint_options)





To silently run Pylint on a module_name.py module,
and get its standard output and error:

from pylint import epylint as lint
(pylint_stdout, pylint_stderr) = lint.py_run('module_name.py', return_std=True)








Command line options

First of all, we have two basic (but useful) options.


	--version

	show program’s version number and exit



	-h, --help

	show help about the command line options





Pylint is architectured around several checkers. you can disable a specific
checker or some of its messages or messages categories by specifying
--disable=<symbol>. If you want to enable only some checkers or some
message symbols, first use --disable=all then
--enable=<symbol> with <symbol> being a comma separated list of checker
names and message symbols. See the list of available features for a
description of provided checkers with their functionalities.
The --disable and --enable options can be used with comma separated lists
mixing checkers, message ids and categories like -d C,W,no-error,design

It is possible to disable all messages with --disable=all. This is
useful to enable only a few checkers or a few messages by first
disabling everything, and then re-enabling only what you need.

Each checker has some specific options, which can take either a yes/no
value, an integer, a python regular expression, or a comma separated
list of values (which are generally used to override a regular
expression in special cases). For a full list of options, use --help

Specifying all the options suitable for your setup and coding
standards can be tedious, so it is possible to use a configuration file to
specify the default values.  You can specify a configuration file on the
command line using the --rcfile option.  Otherwise, Pylint searches for a
configuration file in the following order and uses the first one it finds:


	pylintrc in the current working directory


	.pylintrc in the current working directory


	If the current working directory is in a Python module, Pylint searches up the hierarchy of Python modules until it finds a pylintrc file. This allows you to specify coding standards on a module-by-module basis.  Of course, a directory is judged to be a Python module if it contains an __init__.py file.


	The file named by environment variable PYLINTRC


	if you have a home directory which isn’t /root:


	.pylintrc in your home directory


	.config/pylintrc in your home directory






	/etc/pylintrc




The --generate-rcfile option will generate a commented configuration file
on standard output according to the current configuration and exit. This
includes:


	Any configuration file found as explained above


	Options appearing before --generate-rcfile on the Pylint command line




Of course you can also start with the default values and hand tune the
configuration.

Other useful global options include:


	--ignore=<file[,file…]>

	Add files or directories to the blacklist. They
should be base names, not paths.



	--output-format=<format>

	Select output format (text, html, custom).



	--msg-template=<template>

	Modify text output message template.



	--list-msgs

	Generate pylint’s messages.



	--full-documentation

	Generate pylint’s full documentation, in reST
format.








Parallel execution

It is possible to speed up the execution of Pylint. If the running computer
has more CPUs than one, then the files for checking could be spread on all
cores via Pylints’s sub-processes.
This functionality is exposed via -j command line parameter.
If the provided number is 0, then the total number of CPUs will be used.

Example:

pylint -j 4 mymodule1.py mymodule2.py mymodule3.py mymodule4.py





This will spawn 4 parallel Pylint sub-process, where each provided module will
be checked in parallel. Discovered problems by checkers are not displayed
immediately. They are shown just after completing checking a module.

There are some limitations in running checks in parallel in current
implementation. It is not possible to use custom plugins
(i.e. --load-plugins option), nor it is not possible to use
initialization hooks (i.e. --init-hook option).

This will spawn 4 parallel Pylint subprocesses, each provided module being checked
by one or another subprocess.




Exit codes

Pylint returns bit-encoded exit codes. If applicable the table lists related
stderr stream message output.








	exit code

	meaning

	stderr stream message





	0

	no error

	


	1

	fatal message issued

	


	2

	error message issued

	


	4

	warning message issued

	


	8

	refactor message issued

	


	16

	convention message issued

	


	32

	usage error

	
	“internal error while receiving resultsfrom child linter” “Error occured,
stopping the linter.”


	“<return of linter.help()>”


	“Jobs number <#> should be greater than 0”
















          

      

      

    

  

    
      
          
            
  
Pylint output

The default format for the output is raw text. You can change this by passing
pylint the --output-format=<value> option. Possible values are: json,
parseable, colorized, msvs (visual studio) and html.

Moreover you can customize the exact way information are displayed using the
–msg-template=<format string> option. The format string uses the
Python new format syntax [http://docs.python.org/2/library/string.html#formatstrings] and the following fields are available :


	path

	relative path to the file



	abspath

	absolute path to the file



	line

	line number



	column

	column number



	module

	module name



	obj

	object within the module (if any)



	msg

	text of the message



	msg_id

	the message code (eg. I0011)



	symbol

	symbolic name of the message (eg. locally-disabled)



	C

	one letter indication of the message category



	category

	fullname of the message category





For example, the former (pre 1.0) default format can be obtained with:

pylint --msg-template='{msg_id}:{line:3d},{column}: {obj}: {msg}'





A few other examples:


	the new default format:

{C}:{line:3d},{column:2d}: {msg} ({symbol})







	Visual Studio compatible format (former ‘msvs’ output format):

{path}({line}): [{msg_id}{obj}] {msg}







	Parseable (Emacs and all, former ‘parseable’ output format) format:

{path}:{line}: [{msg_id}({symbol}), {obj}] {msg}







	HTML output (Default for the html output format) format:

'{category}{module}{obj}{line}{column}{msg}'










Source code analysis section

For each python module, Pylint will first display a few ‘*’ characters followed
by the name of the module. Then, a number of messages with the following format:

MESSAGE_TYPE: LINE_NUM:[OBJECT:] MESSAGE





You can get another output format, useful since it’s recognized by
most editors or other development tools using the --output-format=parseable
option.

The message type can be:



	[R]efactor for a “good practice” metric violation


	[C]onvention for coding standard violation


	[W]arning for stylistic problems, or minor programming issues


	[E]rror for important programming issues (i.e. most probably bug)


	[F]atal for errors which prevented further processing







Sometimes the line of code which caused the error is displayed with
a caret pointing to the error. This may be generalized in future
versions of Pylint.

Example (extracted from a run of Pylint on itself…):

************* Module pylint.checkers.format
W: 50: Too long line (86/80)
W:108: Operator not followed by a space
     print >>sys.stderr, 'Unable to match %r', line
            ^
W:141: Too long line (81/80)
W: 74:searchall: Unreachable code
W:171:FormatChecker.process_tokens: Redefining built-in (type)
W:150:FormatChecker.process_tokens: Too many local variables (20/15)
W:150:FormatChecker.process_tokens: Too many branches (13/12)








Reports section

Following the analysis message, Pylint can display a set of reports,
each one focusing on a particular aspect of the project, such as number
of messages by categories, modules dependencies. These features can
be enabled through the --report=y option, or its shorthand
version -rn.

For instance, the metrics report displays summaries gathered from the
current run.



	the number of processed modules


	for each module, the percentage of errors and warnings


	the total number of errors and warnings


	percentage of classes, functions and modules with docstrings, and
a comparison from the previous run


	percentage of classes, functions and modules with correct name
(according to the coding standard), and a comparison from the
previous run


	a list of external dependencies found in the code, and where they appear







Also, a global evaluation for the code is computed.







          

      

      

    

  

    
      
          
            
  
Messages control

An example available from the examples directory:

"""pylint option block-disable"""

__revision__ = None

class Foo(object):
    """block-disable test"""

    def __init__(self):
        pass

    def meth1(self, arg):
        """this issues a message"""
        print self

    def meth2(self, arg):
        """and this one not"""
        # pylint: disable=unused-argument
        print self\
              + "foo"

    def meth3(self):
        """test one line disabling"""
        # no error
        print self.bla # pylint: disable=no-member
        # error
        print self.blop

    def meth4(self):
        """test re-enabling"""
        # pylint: disable=no-member
        # no error
        print self.bla
        print self.blop
        # pylint: enable=no-member
        # error
        print self.blip

    def meth5(self):
        """test IF sub-block re-enabling"""
        # pylint: disable=no-member
        # no error
        print self.bla
        if self.blop:
            # pylint: enable=no-member
            # error
            print self.blip
        else:
            # no error
            print self.blip
        # no error
        print self.blip

    def meth6(self):
        """test TRY/EXCEPT sub-block re-enabling"""
        # pylint: disable=no-member
        # no error
        print self.bla
        try:
            # pylint: enable=no-member
            # error
            print self.blip
        except UndefinedName: # pylint: disable=undefined-variable
            # no error
            print self.blip
        # no error
        print self.blip

    def meth7(self):
        """test one line block opening disabling"""
        if self.blop: # pylint: disable=no-member
            # error
            print self.blip
        else:
            # error
            print self.blip
        # error
        print self.blip


    def meth8(self):
        """test late disabling"""
        # error
        print self.blip
        # pylint: disable=no-member
        # no error
        print self.bla
        print self.blop









          

      

      

    

  

    
      
          
            
  
Pylint features


Pylint global options and switches

Pylint provides global options and switches.


General options


	rcfile

	Specify a configuration file.



	init-hook

	Python code to execute, usually for sys.path manipulation such as
pygtk.require().



	errors-only

	In error mode, checkers without error messages are disabled and for others,
only the ERROR messages are displayed, and no reports are done by default



	py3k

	In Python 3 porting mode, all checkers will be disabled and only messages
emitted by the porting checker will be displayed



	ignore

	Add files or directories to the blacklist. They should be base names, not
paths.

Default: CVS



	ignore-patterns

	Add files or directories matching the regex patterns to the blacklist. The
regex matches against base names, not paths.



	persistent

	Pickle collected data for later comparisons.

Default: yes



	load-plugins

	List of plugins (as comma separated values of python modules names) to load,
usually to register additional checkers.



	comment

	


	jobs

	Use multiple processes to speed up Pylint.

Default: 1



	unsafe-load-any-extension

	Allow loading of arbitrary C extensions. Extensions are imported into the
active Python interpreter and may run arbitrary code.



	extension-pkg-whitelist

	A comma-separated list of package or module names from where C extensions may
be loaded. Extensions are loading into the active Python interpreter and may
run arbitrary code



	optimize-ast

	Allow optimization of some AST trees. This will activate a peephole AST
optimizer, which will apply various small optimizations. For instance, it can
be used to obtain the result of joining multiple strings with the addition
operator. Joining a lot of strings can lead to a maximum recursion error in
Pylint and this flag can prevent that. It has one side effect, the resulting
AST will be different than the one from reality. This option is deprecated
and it will be removed in Pylint 2.0.



	long-help

	more verbose help.








Commands options


	help-msg

	Display a help message for the given message id and exit. The value may be a
comma separated list of message ids.



	list-msgs

	Generate pylint’s messages.



	list-conf-levels

	Generate pylint’s messages.



	full-documentation

	Generate pylint’s full documentation.



	generate-rcfile

	Generate a sample configuration file according to the current configuration.
You can put other options before this one to get them in the generated
configuration.



	generate-man

	Generate pylint’s man page.








Messages control options


	confidence

	Only show warnings with the listed confidence levels. Leave empty to show
all. Valid levels: HIGH, INFERENCE, INFERENCE_FAILURE, UNDEFINED



	enable

	Enable the message, report, category or checker with the given id(s). You can
either give multiple identifier separated by comma (,) or put this option
multiple time (only on the command line, not in the configuration file where
it should appear only once). See also the “–disable” option for examples.



	disable

	Disable the message, report, category or checker with the given id(s). You
can either give multiple identifiers separated by comma (,) or put this
option multiple times (only on the command line, not in the configuration
file where it should appear only once).You can also use “–disable=all” to
disable everything first and then reenable specific checks. For example, if
you want to run only the similarities checker, you can use “–disable=all
–enable=similarities”. If you want to run only the classes checker, but have
no Warning level messages displayed, use”–disable=all –enable=classes
–disable=W”

Default: useless-suppression,dict-view-method,next-method-called,unichr-builtin,old-division,reduce-builtin,unpacking-in-except,file-builtin,old-ne-operator,using-cmp-argument,buffer-builtin,map-builtin-not-iterating,range-builtin-not-iterating,basestring-builtin,unicode-builtin,getslice-method,zip-builtin-not-iterating,cmp-builtin,execfile-builtin,coerce-method,long-builtin,standarderror-builtin,delslice-method,oct-method,filter-builtin-not-iterating,old-raise-syntax,print-statement,raising-string,backtick,intern-builtin,round-builtin,cmp-method,setslice-method,import-star-module-level,long-suffix,parameter-unpacking,nonzero-method,suppressed-message,coerce-builtin,input-builtin,no-absolute-import,indexing-exception,reload-builtin,metaclass-assignment,raw_input-builtin,dict-iter-method,xrange-builtin,apply-builtin,hex-method,old-octal-literal








Reports options


	output-format

	Set the output format. Available formats are text, parseable, colorized, msvs
(visual studio) and html. You can also give a reporter class, eg
mypackage.mymodule.MyReporterClass.

Default: text



	files-output

	Put messages in a separate file for each module / package specified on the
command line instead of printing them on stdout. Reports (if any) will be
written in a file name “pylint_global.[txt|html]”. This option is deprecated
and it will be removed in Pylint 2.0.



	reports

	Tells whether to display a full report or only the messages

Default: yes



	evaluation

	Python expression which should return a note less than 10 (10 is the highest
note). You have access to the variables errors warning, statement which
respectively contain the number of errors / warnings messages and the total
number of statements analyzed. This is used by the global evaluation report
(RP0004).

Default: 10.0 - ((float(5 * error + warning + refactor + convention) / statement) * 10)



	msg-template

	Template used to display messages. This is a python new-style format string
used to format the message information. See doc for all details










Pylint checkers’ options and switches

Pylint checkers can provide three set of features:


	options that control their execution,


	messages that they can raise,


	reports that they can generate.




Below is a list of all checkers and their features.


Typecheck checker

Verbatim name of the checker is typecheck.


Options


	ignore-mixin-members

	Tells whether missing members accessed in mixin class should be ignored. A
mixin class is detected if its name ends with “mixin” (case insensitive).

Default: yes



	ignored-modules

	List of module names for which member attributes should not be checked
(useful for modules/projects where namespaces are manipulated during runtime
and thus existing member attributes cannot be deduced by static analysis. It
supports qualified module names, as well as Unix pattern matching.



	ignored-classes

	List of class names for which member attributes should not be checked (useful
for classes with dynamically set attributes). This supports the use of
qualified names.

Default: optparse.Values,thread._local,_thread._local



	generated-members

	List of members which are set dynamically and missed by pylint inference
system, and so shouldn’t trigger E1101 when accessed. Python regular
expressions are accepted.



	contextmanager-decorators

	List of decorators that produce context managers, such as
contextlib.contextmanager. Add to this list to register other decorators that
produce valid context managers.

Default: contextlib.contextmanager










Messages


	invalid-unary-operand-type (E1130)

	Emitted when an unary operand is used on an object which does not support this
type of operation



	unsupported-binary-operation (E1131)

	Emitted when a binary arithmetic operation between two operands is not
supported.



	no-member (E1101)

	%s %r has no %r member
Used when a variable is accessed for an unexistent member.



	not-callable (E1102)

	%s is not callable
Used when an object being called has been inferred to a non callable object



	redundant-keyword-arg (E1124)

	Argument %r passed by position and keyword in %s call
Used when a function call would result in assigning multiple values to a
function parameter, one value from a positional argument and one from a
keyword argument.



	assignment-from-no-return (E1111)

	Assigning to function call which doesn’t return
Used when an assignment is done on a function call but the inferred function
doesn’t return anything.



	assignment-from-none (E1128)

	Assigning to function call which only returns None
Used when an assignment is done on a function call but the inferred function
returns nothing but None.



	not-context-manager (E1129)

	Context manager ‘%s’ doesn’t implement __enter__ and __exit__.
Used when an instance in a with statement doesn’t implement the context
manager protocol(__enter__/__exit__).



	repeated-keyword (E1132)

	Got multiple values for keyword argument %r in function call
Emitted when a function call got multiple values for a keyword.



	missing-kwoa (E1125)

	Missing mandatory keyword argument %r in %s call
Used when a function call does not pass a mandatory keyword-only argument.
This message can’t be emitted when using Python < 3.0.



	no-value-for-parameter (E1120)

	No value for argument %s in %s call
Used when a function call passes too few arguments.



	invalid-sequence-index (E1126)

	Sequence index is not an int, slice, or instance with __index__
Used when a sequence type is indexed with an invalid type. Valid types are
ints, slices, and objects with an __index__ method.



	invalid-slice-index (E1127)

	Slice index is not an int, None, or instance with __index__
Used when a slice index is not an integer, None, or an object with an
__index__ method.



	too-many-function-args (E1121)

	Too many positional arguments for %s call
Used when a function call passes too many positional arguments.



	unexpected-keyword-arg (E1123)

	Unexpected keyword argument %r in %s call
Used when a function call passes a keyword argument that doesn’t correspond to
one of the function’s parameter names.



	unsupported-membership-test (E1135)

	Value ‘%s’ doesn’t support membership test
Emitted when an instance in membership test expression doesn’timplement
membership protocol (__contains__/__iter__/__getitem__)



	unsubscriptable-object (E1136)

	Value ‘%s’ is unsubscriptable
Emitted when a subscripted value doesn’t support subscription(i.e. doesn’t
define __getitem__ method)








Format checker

Verbatim name of the checker is format.


Options


	max-line-length

	Maximum number of characters on a single line.

Default: 100



	ignore-long-lines

	Regexp for a line that is allowed to be longer than the limit.

Default: ^\s*(# )?<?https?://\S+>?$



	single-line-if-stmt

	Allow the body of an if to be on the same line as the test if there is no
else.



	no-space-check

	List of optional constructs for which whitespace checking is disabled. dict-
separator is used to allow tabulation in dicts, etc.: {1  : 1,n222: 2}.
trailing-comma allows a space between comma and closing bracket: (a, ).
empty-line allows space-only lines.

Default: trailing-comma,dict-separator



	max-module-lines

	Maximum number of lines in a module

Default: 1000



	indent-string

	String used as indentation unit. This is usually ”    ” (4 spaces) or “t” (1
tab).

Default: '    '



	indent-after-paren

	Number of spaces of indent required inside a hanging  or continued line.

Default: 4



	expected-line-ending-format

	Expected format of line ending, e.g. empty (any line ending), LF or CRLF.










Messages


	bad-indentation (W0311)

	Bad indentation. Found %s %s, expected %s
Used when an unexpected number of indentation’s tabulations or spaces has been
found.



	mixed-indentation (W0312)

	Found indentation with %ss instead of %ss
Used when there are some mixed tabs and spaces in a module.



	unnecessary-semicolon (W0301)

	Unnecessary semicolon
Used when a statement is ended by a semi-colon (“;”), which isn’t necessary
(that’s python, not C ;).



	lowercase-l-suffix (W0332)

	Use of “l” as long integer identifier
Used when a lower case “l” is used to mark a long integer. You should use a
upper case “L” since the letter “l” looks too much like the digit “1” This
message can’t be emitted when using Python >= 3.0.



	bad-whitespace (C0326)

	%s space %s %s %s
Used when a wrong number of spaces is used around an operator, bracket or
block opener.



	missing-final-newline (C0304)

	Final newline missing
Used when the last line in a file is missing a newline.



	line-too-long (C0301)

	Line too long (%s/%s)
Used when a line is longer than a given number of characters.



	mixed-line-endings (C0327)

	Mixed line endings LF and CRLF
Used when there are mixed (LF and CRLF) newline signs in a file.



	multiple-statements (C0321)

	More than one statement on a single line
Used when more than on statement are found on the same line.



	too-many-lines (C0302)

	Too many lines in module (%s/%s)
Used when a module has too much lines, reducing its readability.



	trailing-newlines (C0305)

	Trailing newlines
Used when there are trailing blank lines in a file.



	trailing-whitespace (C0303)

	Trailing whitespace
Used when there is whitespace between the end of a line and the newline.



	unexpected-line-ending-format (C0328)

	Unexpected line ending format. There is ‘%s’ while it should be ‘%s’.
Used when there is different newline than expected.



	superfluous-parens (C0325)

	Unnecessary parens after %r keyword
Used when a single item in parentheses follows an if, for, or other keyword.



	bad-continuation (C0330)

	Wrong %s indentation%s%s.
TODO








Iterable Check checker

Verbatim name of the checker is iterable_check.




Messages


	not-an-iterable (E1133)

	Non-iterable value %s is used in an iterating context
Used when a non-iterable value is used in place whereiterable is expected



	not-a-mapping (E1134)

	Non-mapping value %s is used in a mapping context
Used when a non-mapping value is used in place wheremapping is expected








Variables checker

Verbatim name of the checker is variables.


Options


	init-import

	Tells whether we should check for unused import in __init__ files.



	dummy-variables-rgx

	A regular expression matching the name of dummy variables (i.e. expectedly
not used).

Default: (_+[a-zA-Z0-9]*?$)|dummy



	additional-builtins

	List of additional names supposed to be defined in builtins. Remember that
you should avoid to define new builtins when possible.



	callbacks

	List of strings which can identify a callback function by name. A callback
name must start or end with one of those strings.

Default: cb_,_cb



	redefining-builtins-modules

	List of qualified module names which can have objects that can redefine
builtins.

Default: six.moves,future.builtins










Messages


	unpacking-non-sequence (E0633)

	Attempting to unpack a non-sequence%s
Used when something which is not a sequence is used in an unpack assignment



	invalid-all-object (E0604)

	Invalid object %r in __all__, must contain only strings
Used when an invalid (non-string) object occurs in __all__.



	no-name-in-module (E0611)

	No name %r in module %r
Used when a name cannot be found in a module.



	unbalanced-tuple-unpacking (E0632)

	Possible unbalanced tuple unpacking with sequence%s: left side has %d label(s), right side has %d value(s)
Used when there is an unbalanced tuple unpacking in assignment



	undefined-variable (E0602)

	Undefined variable %r
Used when an undefined variable is accessed.



	undefined-all-variable (E0603)

	Undefined variable name %r in __all__
Used when an undefined variable name is referenced in __all__.



	used-before-assignment (E0601)

	Using variable %r before assignment
Used when a local variable is accessed before it’s assignment.



	cell-var-from-loop (W0640)

	Cell variable %s defined in loop
A variable used in a closure is defined in a loop. This will result in all
closures using the same value for the closed-over variable.



	global-variable-undefined (W0601)

	Global variable %r undefined at the module level
Used when a variable is defined through the “global” statement but the
variable is not defined in the module scope.



	redefined-builtin (W0622)

	Redefining built-in %r
Used when a variable or function override a built-in.



	redefine-in-handler (W0623)

	Redefining name %r from %s in exception handler
Used when an exception handler assigns the exception to an existing name



	redefined-outer-name (W0621)

	Redefining name %r from outer scope (line %s)
Used when a variable’s name hide a name defined in the outer scope.



	unused-import (W0611)

	Unused %s
Used when an imported module or variable is not used.



	unused-argument (W0613)

	Unused argument %r
Used when a function or method argument is not used.



	unused-wildcard-import (W0614)

	Unused import %s from wildcard import
Used when an imported module or variable is not used from a ‘from X import
*’ style import.



	unused-variable (W0612)

	Unused variable %r
Used when a variable is defined but not used.



	global-variable-not-assigned (W0602)

	Using global for %r but no assignment is done
Used when a variable is defined through the “global” statement but no
assignment to this variable is done.



	undefined-loop-variable (W0631)

	Using possibly undefined loop variable %r
Used when an loop variable (i.e. defined by a for loop or a list comprehension
or a generator expression) is used outside the loop.



	global-statement (W0603)

	Using the global statement
Used when you use the “global” statement to update a global variable. Pylint
just try to discourage this usage. That doesn’t mean you can not use it !



	global-at-module-level (W0604)

	Using the global statement at the module level
Used when you use the “global” statement at the module level since it has no
effect








String Constant checker

Verbatim name of the checker is string_constant.




Messages


	anomalous-unicode-escape-in-string (W1402)

	Anomalous Unicode escape in byte string: ‘%s’. String constant might be missing an r or u prefix.
Used when an escape like u is encountered in a byte string where it has no
effect.



	anomalous-backslash-in-string (W1401)

	Anomalous backslash in string: ‘%s’. String constant might be missing an r prefix.
Used when a backslash is in a literal string but not as an escape.








Basic checker

Verbatim name of the checker is basic.


Options


	required-attributes

	Required attributes for module. This option is obsolete.



	good-names

	Good variable names which should always be accepted, separated by a comma

Default: i,j,k,ex,Run,_



	bad-names

	Bad variable names which should always be refused, separated by a comma

Default: foo,bar,baz,toto,tutu,tata



	name-group

	Colon-delimited sets of names that determine each other’s naming style when
the name regexes allow several styles.



	include-naming-hint

	Include a hint for the correct naming format with invalid-name



	property-classes

	List of decorators that produce properties, such as abc.abstractproperty. Add
to this list to register other decorators that produce valid properties.

Default: abc.abstractproperty



	method-rgx

	Regular expression matching correct method names

Default: [a-z_][a-z0-9_]{2,30}$



	method-name-hint

	Naming hint for method names

Default: [a-z_][a-z0-9_]{2,30}$



	argument-rgx

	Regular expression matching correct argument names

Default: [a-z_][a-z0-9_]{2,30}$



	argument-name-hint

	Naming hint for argument names

Default: [a-z_][a-z0-9_]{2,30}$



	attr-rgx

	Regular expression matching correct attribute names

Default: [a-z_][a-z0-9_]{2,30}$



	attr-name-hint

	Naming hint for attribute names

Default: [a-z_][a-z0-9_]{2,30}$



	const-rgx

	Regular expression matching correct constant names

Default: (([A-Z_][A-Z0-9_]*)|(__.*__))$



	const-name-hint

	Naming hint for constant names

Default: (([A-Z_][A-Z0-9_]*)|(__.*__))$



	function-rgx

	Regular expression matching correct function names

Default: [a-z_][a-z0-9_]{2,30}$



	function-name-hint

	Naming hint for function names

Default: [a-z_][a-z0-9_]{2,30}$



	class-rgx

	Regular expression matching correct class names

Default: [A-Z_][a-zA-Z0-9]+$



	class-name-hint

	Naming hint for class names

Default: [A-Z_][a-zA-Z0-9]+$



	variable-rgx

	Regular expression matching correct variable names

Default: [a-z_][a-z0-9_]{2,30}$



	variable-name-hint

	Naming hint for variable names

Default: [a-z_][a-z0-9_]{2,30}$



	inlinevar-rgx

	Regular expression matching correct inline iteration names

Default: [A-Za-z_][A-Za-z0-9_]*$



	inlinevar-name-hint

	Naming hint for inline iteration names

Default: [A-Za-z_][A-Za-z0-9_]*$



	class-attribute-rgx

	Regular expression matching correct class attribute names

Default: ([A-Za-z_][A-Za-z0-9_]{2,30}|(__.*__))$



	class-attribute-name-hint

	Naming hint for class attribute names

Default: ([A-Za-z_][A-Za-z0-9_]{2,30}|(__.*__))$



	module-rgx

	Regular expression matching correct module names

Default: (([a-z_][a-z0-9_]*)|([A-Z][a-zA-Z0-9]+))$



	module-name-hint

	Naming hint for module names

Default: (([a-z_][a-z0-9_]*)|([A-Z][a-zA-Z0-9]+))$



	no-docstring-rgx

	Regular expression which should only match function or class names that do
not require a docstring.

Default: ^_



	docstring-min-length

	Minimum line length for functions/classes that require docstrings, shorter
ones are exempt.

Default: -1










Messages


	not-in-loop (E0103)

	%r not properly in loop
Used when break or continue keywords are used outside a loop.



	function-redefined (E0102)

	%s already defined line %s
Used when a function / class / method is redefined.



	continue-in-finally (E0116)

	‘continue’ not supported inside ‘finally’ clause
Emitted when the continue keyword is found inside a finally clause, which is
a SyntaxError.



	abstract-class-instantiated (E0110)

	Abstract class %r with abstract methods instantiated
Used when an abstract class with abc.ABCMeta as metaclass has abstract
methods and is instantiated.



	star-needs-assignment-target (E0114)

	Can use starred expression only in assignment target
Emitted when a star expression is not used in an assignment target. This
message can’t be emitted when using Python < 3.0.



	duplicate-argument-name (E0108)

	Duplicate argument name %s in function definition
Duplicate argument names in function definitions are syntax errors.



	return-in-init (E0101)

	Explicit return in __init__
Used when the special class method __init__ has an explicit return value.



	too-many-star-expressions (E0112)

	More than one starred expression in assignment
Emitted when there are more than one starred expressions (*x) in an
assignment. This is a SyntaxError. This message can’t be emitted when using
Python < 3.0.



	nonlocal-and-global (E0115)

	Name %r is nonlocal and global
Emitted when a name is both nonlocal and global. This message can’t be emitted
when using Python < 3.0.



	return-outside-function (E0104)

	Return outside function
Used when a “return” statement is found outside a function or method.



	return-arg-in-generator (E0106)

	Return with argument inside generator
Used when a “return” statement with an argument is found outside in a
generator function or method (e.g. with some “yield” statements). This message
can’t be emitted when using Python >= 3.3.



	invalid-star-assignment-target (E0113)

	Starred assignment target must be in a list or tuple
Emitted when a star expression is used as a starred assignment target. This
message can’t be emitted when using Python < 3.0.



	bad-reversed-sequence (E0111)

	The first reversed() argument is not a sequence
Used when the first argument to reversed() builtin isn’t a sequence (does not
implement __reversed__, nor __getitem__ and __len__



	nonexistent-operator (E0107)

	Use of the non-existent %s operator
Used when you attempt to use the C-style pre-increment orpre-decrement
operator – and ++, which doesn’t exist in Python.



	yield-outside-function (E0105)

	Yield outside function
Used when a “yield” statement is found outside a function or method.



	init-is-generator (E0100)

	__init__ method is a generator
Used when the special class method __init__ is turned into a generator by a
yield in its body.



	nonlocal-without-binding (E0117)

	nonlocal name %s found without binding
Emitted when a nonlocal variable does not have an attached name somewhere in
the parent scopes This message can’t be emitted when using Python < 3.0.



	lost-exception (W0150)

	%s statement in finally block may swallow exception
Used when a break or a return statement is found inside the finally clause of
a try…finally block: the exceptions raised in the try clause will be
silently swallowed instead of being re-raised.



	assert-on-tuple (W0199)

	Assert called on a 2-uple. Did you mean ‘assert x,y’?
A call of assert on a tuple will always evaluate to true if the tuple is not
empty, and will always evaluate to false if it is.



	dangerous-default-value (W0102)

	Dangerous default value %s as argument
Used when a mutable value as list or dictionary is detected in a default value
for an argument.



	duplicate-key (W0109)

	Duplicate key %r in dictionary
Used when a dictionary expression binds the same key multiple times.



	useless-else-on-loop (W0120)

	Else clause on loop without a break statement
Loops should only have an else clause if they can exit early with a break
statement, otherwise the statements under else should be on the same scope as
the loop itself.



	expression-not-assigned (W0106)

	Expression “%s” is assigned to nothing
Used when an expression that is not a function call is assigned to nothing.
Probably something else was intended.



	confusing-with-statement (W0124)

	Following “as” with another context manager looks like a tuple.
Emitted when a with statement component returns multiple values and uses
name binding with as only for a part of those values, as in with ctx() as a,
b. This can be misleading, since it’s not clear if the context manager returns
a tuple or if the node without a name binding is another context manager.



	unnecessary-lambda (W0108)

	Lambda may not be necessary
Used when the body of a lambda expression is a function call on the same
argument list as the lambda itself; such lambda expressions are in all but a
few cases replaceable with the function being called in the body of the
lambda.



	pointless-statement (W0104)

	Statement seems to have no effect
Used when a statement doesn’t have (or at least seems to) any effect.



	pointless-string-statement (W0105)

	String statement has no effect
Used when a string is used as a statement (which of course has no effect).
This is a particular case of W0104 with its own message so you can easily
disable it if you’re using those strings as documentation, instead of
comments.



	unnecessary-pass (W0107)

	Unnecessary pass statement
Used when a “pass” statement that can be avoided is encountered.



	unreachable (W0101)

	Unreachable code
Used when there is some code behind a “return” or “raise” statement, which
will never be accessed.



	eval-used (W0123)

	Use of eval
Used when you use the “eval” function, to discourage its usage. Consider using
ast.literal_eval for safely evaluating strings containing Python expressions
from untrusted sources.



	exec-used (W0122)

	Use of exec
Used when you use the “exec” statement (function for Python 3), to discourage
its usage. That doesn’t mean you can not use it !



	using-constant-test (W0125)

	Using a conditional statement with a constant value
Emitted when a conditional statement (If or ternary if) uses a constant value
for its test. This might not be what the user intended to do.



	deprecated-lambda (W0110)

	map/filter on lambda could be replaced by comprehension
Used when a lambda is the first argument to “map” or “filter”. It could be
clearer as a list comprehension or generator expression. This message can’t be
emitted when using Python >= 3.0.



	blacklisted-name (C0102)

	Black listed name “%s”
Used when the name is listed in the black list (unauthorized names).



	misplaced-comparison-constant (C0122)

	Comparison should be %s
Used when the constant is placed on the left sideof a comparison. It is
usually clearer in intent to place it in the right hand side of the
comparison.



	singleton-comparison (C0121)

	Comparison to %s should be %s
Used when an expression is compared to singleton values like True, False or
None.



	unneeded-not (C0113)

	Consider changing “%s” to “%s”
Used when a boolean expression contains an unneeded negation.



	consider-iterating-dictionary (C0201)

	Consider iterating the dictionary directly instead of calling .keys()
Emitted when the keys of a dictionary are iterated through the .keys() method.
It is enough to just iterate through the dictionary itself, as in “for key in
dictionary”.



	consider-using-enumerate (C0200)

	Consider using enumerate instead of iterating with range and len
Emitted when code that iterates with range and len is encountered. Such code
can be simplified by using the enumerate builtin.



	empty-docstring (C0112)

	Empty %s docstring
Used when a module, function, class or method has an empty docstring (it would
be too easy ;).



	invalid-name (C0103)

	Invalid %s name “%s”%s
Used when the name doesn’t match the regular expression associated to its type
(constant, variable, class…).



	missing-docstring (C0111)

	Missing %s docstring
Used when a module, function, class or method has no docstring.Some special
methods like __init__ doesn’t necessary require a docstring.



	unidiomatic-typecheck (C0123)

	Using type() instead of isinstance() for a typecheck.
The idiomatic way to perform an explicit typecheck in Python is to use
isinstance(x, Y) rather than type(x) == Y, type(x) is Y. Though there are
unusual situations where these give different results.








Reports


	RP0101

	Statistics by type








Multiple Types checker

Verbatim name of the checker is multiple_types.




Messages


	redefined-variable-type (R0204)

	Redefinition of %s type from %s to %s
Used when the type of a variable changes inside a method or a function.








Elif checker

Verbatim name of the checker is elif.


Options


	max-nested-blocks

	Maximum number of nested blocks for function / method body

Default: 5










Messages


	simplifiable-if-statement (R0102)

	The if statement can be replaced with %s
Used when an if statement can be replaced with ‘bool(test)’.



	too-many-nested-blocks (R0101)

	Too many nested blocks (%s/%s)
Used when a function or a method has too many nested blocks. This makes the
code less understandable and maintainable.








Newstyle checker

Verbatim name of the checker is newstyle.




Messages


	bad-super-call (E1003)

	Bad first argument %r given to super()
Used when another argument than the current class is given as first argument
of the super builtin.



	missing-super-argument (E1004)

	Missing argument to super()
Used when the super builtin didn’t receive an argument. This message can’t be
emitted when using Python >= 3.0.



	slots-on-old-class (E1001)

	Use of __slots__ on an old style class
Used when an old style class uses the __slots__ attribute. This message can’t
be emitted when using Python >= 3.0.



	super-on-old-class (E1002)

	Use of super on an old style class
Used when an old style class uses the super builtin. This message can’t be
emitted when using Python >= 3.0.



	property-on-old-class (W1001)

	Use of “property” on an old style class
Used when Pylint detect the use of the builtin “property” on an old style
class while this is relying on new style classes features. This message can’t
be emitted when using Python >= 3.0.



	old-style-class (C1001)

	Old-style class defined.
Used when a class is defined that does not inherit from anotherclass and does
not inherit explicitly from “object”. This message can’t be emitted when using
Python >= 3.0.








Python3 checker

Verbatim name of the checker is python3.




Messages


	unpacking-in-except (E1603)

	Implicit unpacking of exceptions is not supported in Python 3
Python3 will not allow implicit unpacking of exceptions in except clauses. See
http://www.python.org/dev/peps/pep-3110/ This message can’t be emitted when
using Python >= 3.0.



	import-star-module-level (E1609)

	Import * only allowed at module level
Used when the import star syntax is used somewhere else than the module level.
This message can’t be emitted when using Python >= 3.0.



	parameter-unpacking (E1602)

	Parameter unpacking specified
Used when parameter unpacking is specified for a function(Python 3 doesn’t
allow it) This message can’t be emitted when using Python >= 3.0.



	long-suffix (E1606)

	Use of long suffix
Used when “l” or “L” is used to mark a long integer. This will not work in
Python 3, since int and long types have merged. This message can’t be
emitted when using Python >= 3.0.



	old-octal-literal (E1608)

	Use of old octal literal
Usen when encountering the old octal syntax, removed in Python 3. To use the
new syntax, prepend 0o on the number. This message can’t be emitted when using
Python >= 3.0.



	old-ne-operator (E1607)

	Use of the <> operator
Used when the deprecated “<>” operator is used instead of “!=”. This is
removed in Python 3. This message can’t be emitted when using Python >= 3.0.



	backtick (E1605)

	Use of the `` operator
Used when the deprecated “``” (backtick) operator is used instead of the str()
function. This message can’t be emitted when using Python >= 3.0.



	old-raise-syntax (E1604)

	Use raise ErrorClass(args) instead of raise ErrorClass, args.
Used when the alternate raise syntax ‘raise foo, bar’ is used instead of
‘raise foo(bar)’. This message can’t be emitted when using Python >= 3.0.



	print-statement (E1601)

	print statement used
Used when a print statement is used (print is a function in Python 3) This
message can’t be emitted when using Python >= 3.0.



	metaclass-assignment (W1623)

	Assigning to a class’s __metaclass__ attribute
Used when a metaclass is specified by assigning to __metaclass__ (Python 3
specifies the metaclass as a class statement argument) This message can’t be
emitted when using Python >= 3.0.



	next-method-called (W1622)

	Called a next() method on an object
Used when an object’s next() method is called (Python 3 uses the next() built-
in function) This message can’t be emitted when using Python >= 3.0.



	dict-iter-method (W1620)

	Calling a dict.iter*() method
Used for calls to dict.iterkeys(), itervalues() or iteritems() (Python 3 lacks
these methods) This message can’t be emitted when using Python >= 3.0.



	dict-view-method (W1621)

	Calling a dict.view*() method
Used for calls to dict.viewkeys(), viewvalues() or viewitems() (Python 3 lacks
these methods) This message can’t be emitted when using Python >= 3.0.



	indexing-exception (W1624)

	Indexing exceptions will not work on Python 3
Indexing exceptions will not work on Python 3. Use exception.args[index]
instead. This message can’t be emitted when using Python >= 3.0.



	raising-string (W1625)

	Raising a string exception
Used when a string exception is raised. This will not work on Python 3. This
message can’t be emitted when using Python >= 3.0.



	standarderror-builtin (W1611)

	StandardError built-in referenced
Used when the StandardError built-in function is referenced (missing from
Python 3) This message can’t be emitted when using Python >= 3.0.



	using-cmp-argument (W1640)

	Using the cmp argument for list.sort / sorted
Using the cmp argument for list.sort or the sorted builtin should be avoided,
since it was removed in Python 3. Using either key or functools.cmp_to_key
should be preferred. This message can’t be emitted when using Python >= 3.0.



	cmp-method (W1630)

	__cmp__ method defined
Used when a __cmp__ method is defined (method is not used by Python 3) This
message can’t be emitted when using Python >= 3.0.



	coerce-method (W1614)

	__coerce__ method defined
Used when a __coerce__ method is defined (method is not used by Python 3) This
message can’t be emitted when using Python >= 3.0.



	delslice-method (W1615)

	__delslice__ method defined
Used when a __delslice__ method is defined (method is not used by Python 3)
This message can’t be emitted when using Python >= 3.0.



	getslice-method (W1616)

	__getslice__ method defined
Used when a __getslice__ method is defined (method is not used by Python 3)
This message can’t be emitted when using Python >= 3.0.



	hex-method (W1628)

	__hex__ method defined
Used when a __hex__ method is defined (method is not used by Python 3) This
message can’t be emitted when using Python >= 3.0.



	nonzero-method (W1629)

	__nonzero__ method defined
Used when a __nonzero__ method is defined (method is not used by Python 3)
This message can’t be emitted when using Python >= 3.0.



	oct-method (W1627)

	__oct__ method defined
Used when a __oct__ method is defined (method is not used by Python 3) This
message can’t be emitted when using Python >= 3.0.



	setslice-method (W1617)

	__setslice__ method defined
Used when a __setslice__ method is defined (method is not used by Python 3)
This message can’t be emitted when using Python >= 3.0.



	apply-builtin (W1601)

	apply built-in referenced
Used when the apply built-in function is referenced (missing from Python 3)
This message can’t be emitted when using Python >= 3.0.



	basestring-builtin (W1602)

	basestring built-in referenced
Used when the basestring built-in function is referenced (missing from Python
3) This message can’t be emitted when using Python >= 3.0.



	buffer-builtin (W1603)

	buffer built-in referenced
Used when the buffer built-in function is referenced (missing from Python 3)
This message can’t be emitted when using Python >= 3.0.



	cmp-builtin (W1604)

	cmp built-in referenced
Used when the cmp built-in function is referenced (missing from Python 3) This
message can’t be emitted when using Python >= 3.0.



	coerce-builtin (W1605)

	coerce built-in referenced
Used when the coerce built-in function is referenced (missing from Python 3)
This message can’t be emitted when using Python >= 3.0.



	old-division (W1619)

	division w/o __future__ statement
Used for non-floor division w/o a float literal or from __future__ import
division (Python 3 returns a float for int division unconditionally) This
message can’t be emitted when using Python >= 3.0.



	execfile-builtin (W1606)

	execfile built-in referenced
Used when the execfile built-in function is referenced (missing from Python 3)
This message can’t be emitted when using Python >= 3.0.



	file-builtin (W1607)

	file built-in referenced
Used when the file built-in function is referenced (missing from Python 3)
This message can’t be emitted when using Python >= 3.0.



	filter-builtin-not-iterating (W1639)

	filter built-in referenced when not iterating
Used when the filter built-in is referenced in a non-iterating context
(returns an iterator in Python 3) This message can’t be emitted when using
Python >= 3.0.



	no-absolute-import (W1618)

	import missing `from __future__ import absolute_import`
Used when an import is not accompanied by from __future__ import
absolute_import (default behaviour in Python 3) This message can’t be
emitted when using Python >= 3.0.



	input-builtin (W1632)

	input built-in referenced
Used when the input built-in is referenced (backwards-incompatible semantics
in Python 3) This message can’t be emitted when using Python >= 3.0.



	intern-builtin (W1634)

	intern built-in referenced
Used when the intern built-in is referenced (Moved to sys.intern in Python 3)
This message can’t be emitted when using Python >= 3.0.



	long-builtin (W1608)

	long built-in referenced
Used when the long built-in function is referenced (missing from Python 3)
This message can’t be emitted when using Python >= 3.0.



	map-builtin-not-iterating (W1636)

	map built-in referenced when not iterating
Used when the map built-in is referenced in a non-iterating context (returns
an iterator in Python 3) This message can’t be emitted when using Python >=
3.0.



	range-builtin-not-iterating (W1638)

	range built-in referenced when not iterating
Used when the range built-in is referenced in a non-iterating context (returns
an iterator in Python 3) This message can’t be emitted when using Python >=
3.0.



	raw_input-builtin (W1609)

	raw_input built-in referenced
Used when the raw_input built-in function is referenced (missing from Python
3) This message can’t be emitted when using Python >= 3.0.



	reduce-builtin (W1610)

	reduce built-in referenced
Used when the reduce built-in function is referenced (missing from Python 3)
This message can’t be emitted when using Python >= 3.0.



	reload-builtin (W1626)

	reload built-in referenced
Used when the reload built-in function is referenced (missing from Python 3).
You can use instead imp.reload or importlib.reload. This message can’t be
emitted when using Python >= 3.0.



	round-builtin (W1633)

	round built-in referenced
Used when the round built-in is referenced (backwards-incompatible semantics
in Python 3) This message can’t be emitted when using Python >= 3.0.



	unichr-builtin (W1635)

	unichr built-in referenced
Used when the unichr built-in is referenced (Use chr in Python 3) This message
can’t be emitted when using Python >= 3.0.



	unicode-builtin (W1612)

	unicode built-in referenced
Used when the unicode built-in function is referenced (missing from Python 3)
This message can’t be emitted when using Python >= 3.0.



	xrange-builtin (W1613)

	xrange built-in referenced
Used when the xrange built-in function is referenced (missing from Python 3)
This message can’t be emitted when using Python >= 3.0.



	zip-builtin-not-iterating (W1637)

	zip built-in referenced when not iterating
Used when the zip built-in is referenced in a non-iterating context (returns
an iterator in Python 3) This message can’t be emitted when using Python >=
3.0.








Similarities checker

Verbatim name of the checker is similarities.


Options


	min-similarity-lines

	Minimum lines number of a similarity.

Default: 4



	ignore-comments

	Ignore comments when computing similarities.

Default: yes



	ignore-docstrings

	Ignore docstrings when computing similarities.

Default: yes



	ignore-imports

	Ignore imports when computing similarities.










Messages


	duplicate-code (R0801)

	Similar lines in %s files
Indicates that a set of similar lines has been detected among multiple file.
This usually means that the code should be refactored to avoid this
duplication.








Reports


	RP0801

	Duplication








String checker

Verbatim name of the checker is string.




Messages


	format-needs-mapping (E1303)

	Expected mapping for format string, not %s
Used when a format string that uses named conversion specifiers is used with
an argument that is not a mapping.



	truncated-format-string (E1301)

	Format string ends in middle of conversion specifier
Used when a format string terminates before the end of a conversion specifier.



	missing-format-string-key (E1304)

	Missing key %r in format string dictionary
Used when a format string that uses named conversion specifiers is used with a
dictionary that doesn’t contain all the keys required by the format string.



	mixed-format-string (E1302)

	Mixing named and unnamed conversion specifiers in format string
Used when a format string contains both named (e.g. ‘%(foo)d’) and unnamed
(e.g. ‘%d’) conversion specifiers. This is also used when a named conversion
specifier contains * for the minimum field width and/or precision.



	too-few-format-args (E1306)

	Not enough arguments for format string
Used when a format string that uses unnamed conversion specifiers is given too
few arguments



	bad-str-strip-call (E1310)

	Suspicious argument in %s.%s call
The argument to a str.{l,r,}strip call contains a duplicate character,



	too-many-format-args (E1305)

	Too many arguments for format string
Used when a format string that uses unnamed conversion specifiers is given too
many arguments.



	bad-format-character (E1300)

	Unsupported format character %r (%#02x) at index %d
Used when a unsupported format character is used in a format string.



	format-combined-specification (W1305)

	Format string contains both automatic field numbering and manual field specification
Usen when a PEP 3101 format string contains both automatic field numbering
(e.g. ‘{}’) and manual field specification (e.g. ‘{0}’). This message can’t be
emitted when using Python < 2.7.



	bad-format-string-key (W1300)

	Format string dictionary key should be a string, not %s
Used when a format string that uses named conversion specifiers is used with a
dictionary whose keys are not all strings.



	bad-format-string (W1302)

	Invalid format string
Used when a PEP 3101 format string is invalid. This message can’t be emitted
when using Python < 2.7.



	missing-format-attribute (W1306)

	Missing format attribute %r in format specifier %r
Used when a PEP 3101 format string uses an attribute specifier ({0.length}),
but the argument passed for formatting doesn’t have that attribute. This
message can’t be emitted when using Python < 2.7.



	missing-format-argument-key (W1303)

	Missing keyword argument %r for format string
Used when a PEP 3101 format string that uses named fields doesn’t receive one
or more required keywords. This message can’t be emitted when using Python <
2.7.



	unused-format-string-argument (W1304)

	Unused format argument %r
Used when a PEP 3101 format string that uses named fields is used with an
argument that is not required by the format string. This message can’t be
emitted when using Python < 2.7.



	unused-format-string-key (W1301)

	Unused key %r in format string dictionary
Used when a format string that uses named conversion specifiers is used with a
dictionary that contains keys not required by the format string.



	invalid-format-index (W1307)

	Using invalid lookup key %r in format specifier %r
Used when a PEP 3101 format string uses a lookup specifier ({a[1]}), but the
argument passed for formatting doesn’t contain or doesn’t have that key as an
attribute. This message can’t be emitted when using Python < 2.7.








Metrics checker

Verbatim name of the checker is metrics.




Reports


	RP0701

	Raw metrics








Spelling checker

Verbatim name of the checker is spelling.


Options


	spelling-dict

	Spelling dictionary name. Available dictionaries: none. To make it working
install python-enchant package.



	spelling-ignore-words

	List of comma separated words that should not be checked.



	spelling-private-dict-file

	A path to a file that contains private dictionary; one word per line.



	spelling-store-unknown-words

	Tells whether to store unknown words to indicated private dictionary in
–spelling-private-dict-file option instead of raising a message.










Messages


	invalid-characters-in-docstring (C0403)

	Invalid characters %r in a docstring
Used when a word in docstring cannot be checked by enchant.



	wrong-spelling-in-comment (C0401)

	Wrong spelling of a word ‘%s’ in a comment:
Used when a word in comment is not spelled correctly.



	wrong-spelling-in-docstring (C0402)

	Wrong spelling of a word ‘%s’ in a docstring:
Used when a word in docstring is not spelled correctly.








Imports checker

Verbatim name of the checker is imports.


Options


	deprecated-modules

	Deprecated modules which should not be used, separated by a comma

Default: optparse



	import-graph

	Create a graph of every (i.e. internal and external) dependencies in the
given file (report RP0402 must not be disabled)



	ext-import-graph

	Create a graph of external dependencies in the given file (report RP0402 must
not be disabled)



	int-import-graph

	Create a graph of internal dependencies in the given file (report RP0402 must
not be disabled)



	known-standard-library

	Force import order to recognize a module as part of the standard
compatibility libraries.



	known-third-party

	Force import order to recognize a module as part of a third party library.

Default: enchant



	analyse-fallback-blocks

	Analyse import fallback blocks. This can be used to support both Python 2 and
3 compatible code, which means that the block might have code that exists
only in one or another interpreter, leading to false positives when analysed.










Messages


	import-error (E0401)

	Unable to import %s
Used when pylint has been unable to import a module.



	import-self (W0406)

	Module import itself
Used when a module is importing itself.



	reimported (W0404)

	Reimport %r (imported line %s)
Used when a module is reimported multiple times.



	relative-import (W0403)

	Relative import %r, should be %r
Used when an import relative to the package directory is detected. This
message can’t be emitted when using Python >= 3.0.



	deprecated-module (W0402)

	Uses of a deprecated module %r
Used a module marked as deprecated is imported.



	wildcard-import (W0401)

	Wildcard import %s
Used when from module import * is detected.



	misplaced-future (W0410)

	__future__ import is not the first non docstring statement
Python 2.5 and greater require __future__ import to be the first non docstring
statement in the module.



	cyclic-import (R0401)

	Cyclic import (%s)
Used when a cyclic import between two or more modules is detected.



	wrong-import-order (C0411)

	%s comes before %s
Used when PEP8 import order is not respected (standard imports first, then
third-party libraries, then local imports)



	wrong-import-position (C0413)

	Import “%s” should be placed at the top of the module
Used when code and imports are mixed



	ungrouped-imports (C0412)

	Imports from package %s are not grouped
Used when imports are not grouped by packages



	multiple-imports (C0410)

	Multiple imports on one line (%s)
Used when import statement importing multiple modules is detected.








Reports


	RP0401

	External dependencies



	RP0402

	Modules dependencies graph








Miscellaneous checker

Verbatim name of the checker is miscellaneous.


Options


	notes

	List of note tags to take in consideration, separated by a comma.

Default: FIXME,XXX,TODO










Messages


	fixme (W0511)

	Used when a warning note as FIXME or XXX is detected.



	invalid-encoded-data (W0512)

	Cannot decode using encoding “%s”, unexpected byte at position %d
Used when a source line cannot be decoded using the specified source file
encoding. This message can’t be emitted when using Python >= 3.0.








Exceptions checker

Verbatim name of the checker is exceptions.


Options


	overgeneral-exceptions

	Exceptions that will emit a warning when being caught. Defaults to
“Exception”

Default: Exception










Messages


	bad-except-order (E0701)

	Bad except clauses order (%s)
Used when except clauses are not in the correct order (from the more specific
to the more generic). If you don’t fix the order, some exceptions may not be
catched by the most specific handler.



	catching-non-exception (E0712)

	Catching an exception which doesn’t inherit from BaseException: %s
Used when a class which doesn’t inherit from BaseException is used as an
exception in an except clause.



	bad-exception-context (E0703)

	Exception context set to something which is not an exception, nor None
Used when using the syntax “raise … from …”, where the exception context
is not an exception, nor None. This message can’t be emitted when using Python
< 3.0.



	notimplemented-raised (E0711)

	NotImplemented raised - should raise NotImplementedError
Used when NotImplemented is raised instead of NotImplementedError



	raising-bad-type (E0702)

	Raising %s while only classes or instances are allowed
Used when something which is neither a class, an instance or a string is
raised (i.e. a TypeError will be raised).



	raising-non-exception (E0710)

	Raising a new style class which doesn’t inherit from BaseException
Used when a new style class which doesn’t inherit from BaseException is
raised.



	misplaced-bare-raise (E0704)

	The raise statement is not inside an except clause
Used when a bare raise is not used inside an except clause. This generates an
error, since there are no active exceptions to be reraised. An exception to
this rule is represented by a bare raise inside a finally clause, which might
work, as long as an exception is raised inside the try block, but it is
nevertheless a code smell that must not be relied upon.



	duplicate-except (W0705)

	Catching previously caught exception type %s
Used when an except catches a type that was already caught by a previous
handler.



	broad-except (W0703)

	Catching too general exception %s
Used when an except catches a too general exception, possibly burying
unrelated errors.



	nonstandard-exception (W0710)

	Exception doesn’t inherit from standard “Exception” class
Used when a custom exception class is raised but doesn’t inherit from the
builtin “Exception” class. This message can’t be emitted when using Python >=
3.0.



	binary-op-exception (W0711)

	Exception to catch is the result of a binary “%s” operation
Used when the exception to catch is of the form “except A or B:”. If intending
to catch multiple, rewrite as “except (A, B):”



	bare-except (W0702)

	No exception type(s) specified
Used when an except clause doesn’t specify exceptions type to catch.








Stdlib checker

Verbatim name of the checker is stdlib.




Messages


	bad-open-mode (W1501)

	“%s” is not a valid mode for open.
Python supports: r, w, a[, x] modes with b, +, and U (only with r) options.
See http://docs.python.org/2/library/functions.html#open



	redundant-unittest-assert (W1503)

	Redundant use of %s with constant value %r
The first argument of assertTrue and assertFalse is a condition. If a constant
is passed as parameter, that condition will be always true. In this case a
warning should be emitted.



	boolean-datetime (W1502)

	Using datetime.time in a boolean context.
Using datetime.time in a boolean context can hide subtle bugs when the time
they represent matches midnight UTC. This behaviour was fixed in Python 3.5.
See http://bugs.python.org/issue13936 for reference. This message can’t be
emitted when using Python >= 3.5.



	deprecated-method (W1505)

	Using deprecated method %s()
The method is marked as deprecated and will be removed in a future version of
Python. Consider looking for an alternative in the documentation.








Design checker

Verbatim name of the checker is design.


Options


	max-args

	Maximum number of arguments for function / method

Default: 5



	ignored-argument-names

	Argument names that match this expression will be ignored. Default to name
with leading underscore

Default: _.*



	max-locals

	Maximum number of locals for function / method body

Default: 15



	max-returns

	Maximum number of return / yield for function / method body

Default: 6



	max-branches

	Maximum number of branch for function / method body

Default: 12



	max-statements

	Maximum number of statements in function / method body

Default: 50



	max-parents

	Maximum number of parents for a class (see R0901).

Default: 7



	max-attributes

	Maximum number of attributes for a class (see R0902).

Default: 7



	min-public-methods

	Minimum number of public methods for a class (see R0903).

Default: 2



	max-public-methods

	Maximum number of public methods for a class (see R0904).

Default: 20



	max-bool-expr

	Maximum number of boolean expressions in a if statement

Default: 5










Messages


	too-few-public-methods (R0903)

	Too few public methods (%s/%s)
Used when class has too few public methods, so be sure it’s really worth it.



	too-many-ancestors (R0901)

	Too many ancestors (%s/%s)
Used when class has too many parent classes, try to reduce this to get a
simpler (and so easier to use) class.



	too-many-arguments (R0913)

	Too many arguments (%s/%s)
Used when a function or method takes too many arguments.



	too-many-boolean-expressions (R0916)

	Too many boolean expressions in if statement (%s/%s)
Used when a if statement contains too many boolean expressions



	too-many-branches (R0912)

	Too many branches (%s/%s)
Used when a function or method has too many branches, making it hard to
follow.



	too-many-instance-attributes (R0902)

	Too many instance attributes (%s/%s)
Used when class has too many instance attributes, try to reduce this to get a
simpler (and so easier to use) class.



	too-many-locals (R0914)

	Too many local variables (%s/%s)
Used when a function or method has too many local variables.



	too-many-public-methods (R0904)

	Too many public methods (%s/%s)
Used when class has too many public methods, try to reduce this to get a
simpler (and so easier to use) class.



	too-many-return-statements (R0911)

	Too many return statements (%s/%s)
Used when a function or method has too many return statement, making it hard
to follow.



	too-many-statements (R0915)

	Too many statements (%s/%s)
Used when a function or method has too many statements. You should then split
it in smaller functions / methods.








Classes checker

Verbatim name of the checker is classes.


Options


	ignore-iface-methods

	This is deprecated, because it is not used anymore.



	defining-attr-methods

	List of method names used to declare (i.e. assign) instance attributes.

Default: __init__,__new__,setUp



	valid-classmethod-first-arg

	List of valid names for the first argument in a class method.

Default: cls



	valid-metaclass-classmethod-first-arg

	List of valid names for the first argument in a metaclass class method.

Default: mcs



	exclude-protected

	List of member names, which should be excluded from the protected access
warning.

Default: _asdict,_fields,_replace,_source,_make










Messages


	access-member-before-definition (E0203)

	Access to member %r before its definition line %s
Used when an instance member is accessed before it’s actually assigned.



	method-hidden (E0202)

	An attribute defined in %s line %s hides this method
Used when a class defines a method which is hidden by an instance attribute
from an ancestor class or set by some client code.



	assigning-non-slot (E0237)

	Assigning to attribute %r not defined in class slots
Used when assigning to an attribute not defined in the class slots.



	duplicate-bases (E0241)

	Duplicate bases for class %r
Used when a class has duplicate bases.



	inconsistent-mro (E0240)

	Inconsistent method resolution order for class %r
Used when a class has an inconsistent method resolutin order.



	inherit-non-class (E0239)

	Inheriting %r, which is not a class.
Used when a class inherits from something which is not a class.



	invalid-slots (E0238)

	Invalid __slots__ object
Used when an invalid __slots__ is found in class. Only a string, an iterable
or a sequence is permitted.



	invalid-slots-object (E0236)

	Invalid object %r in __slots__, must contain only non empty strings
Used when an invalid (non-string) object occurs in __slots__.



	no-method-argument (E0211)

	Method has no argument
Used when a method which should have the bound instance as first argument has
no argument defined.



	no-self-argument (E0213)

	Method should have “self” as first argument
Used when a method has an attribute different the “self” as first argument.
This is considered as an error since this is a so common convention that you
shouldn’t break it!



	unexpected-special-method-signature (E0302)

	The special method %r expects %s param(s), %d %s given
Emitted when a special method was defined with an invalid number of
parameters. If it has too few or too many, it might not work at all.



	non-iterator-returned (E0301)

	__iter__ returns non-iterator
Used when an __iter__ method returns something which is not an iterable (i.e.
has no __next__ method)



	invalid-length-returned (E0303)

	__len__ does not return non-negative integer
Used when an __len__ method returns something which is not a non-negative
integer



	protected-access (W0212)

	Access to a protected member %s of a client class
Used when a protected member (i.e. class member with a name beginning with an
underscore) is access outside the class or a descendant of the class where
it’s defined.



	arguments-differ (W0221)

	Arguments number differs from %s %r method
Used when a method has a different number of arguments than in the implemented
interface or in an overridden method.



	attribute-defined-outside-init (W0201)

	Attribute %r defined outside __init__
Used when an instance attribute is defined outside the __init__ method.



	no-init (W0232)

	Class has no __init__ method
Used when a class has no __init__ method, neither its parent classes.



	abstract-method (W0223)

	Method %r is abstract in class %r but is not overridden
Used when an abstract method (i.e. raise NotImplementedError) is not
overridden in concrete class.



	signature-differs (W0222)

	Signature differs from %s %r method
Used when a method signature is different than in the implemented interface or
in an overridden method.



	bad-staticmethod-argument (W0211)

	Static method with %r as first argument
Used when a static method has “self” or a value specified in valid-
classmethod-first-arg option or valid-metaclass-classmethod-first-arg option
as first argument.



	non-parent-init-called (W0233)

	__init__ method from a non direct base class %r is called
Used when an __init__ method is called on a class which is not in the direct
ancestors for the analysed class.



	super-init-not-called (W0231)

	__init__ method from base class %r is not called
Used when an ancestor class method has an __init__ method which is not called
by a derived class.



	no-classmethod-decorator (R0202)

	Consider using a decorator instead of calling classmethod
Used when a class method is defined without using the decorator syntax.



	no-staticmethod-decorator (R0203)

	Consider using a decorator instead of calling staticmethod
Used when a static method is defined without using the decorator syntax.



	no-self-use (R0201)

	Method could be a function
Used when a method doesn’t use its bound instance, and so could be written as
a function.



	bad-classmethod-argument (C0202)

	Class method %s should have %s as first argument
Used when a class method has a first argument named differently than the value
specified in valid-classmethod-first-arg option (default to “cls”),
recommended to easily differentiate them from regular instance methods.



	bad-mcs-classmethod-argument (C0204)

	Metaclass class method %s should have %s as first argument
Used when a metaclass class method has a first argument named differently than
the value specified in valid-metaclass-classmethod-first-arg option (default
to “mcs”), recommended to easily differentiate them from regular instance
methods.



	bad-mcs-method-argument (C0203)

	Metaclass method %s should have %s as first argument
Used when a metaclass method has a first agument named differently than the
value specified in valid-classmethod-first-arg option (default to “cls”),
recommended to easily differentiate them from regular instance methods.



	method-check-failed (F0202)

	Unable to check methods signature (%s / %s)
Used when Pylint has been unable to check methods signature compatibility for
an unexpected reason. Please report this kind if you don’t make sense of it.








Async checker

Verbatim name of the checker is async.




Messages


	not-async-context-manager (E1701)

	Async context manager ‘%s’ doesn’t implement __aenter__ and __aexit__.
Used when an async context manager is used with an object that does not
implement the async context management protocol. This message can’t be emitted
when using Python < 3.5.



	yield-inside-async-function (E1700)

	Yield inside async function
Used when an yield or yield from statement is found inside an async
function. This message can’t be emitted when using Python < 3.5.








Logging checker

Verbatim name of the checker is logging.


Options


	logging-modules

	Logging modules to check that the string format arguments are in logging
function parameter format

Default: logging










Messages


	logging-format-truncated (E1201)

	Logging format string ends in middle of conversion specifier
Used when a logging statement format string terminates before the end of a
conversion specifier.



	logging-too-few-args (E1206)

	Not enough arguments for logging format string
Used when a logging format string is given too many arguments



	logging-too-many-args (E1205)

	Too many arguments for logging format string
Used when a logging format string is given too few arguments.



	logging-unsupported-format (E1200)

	Unsupported logging format character %r (%#02x) at index %d
Used when an unsupported format character is used in a logging statement
format string.



	logging-not-lazy (W1201)

	Specify string format arguments as logging function parameters
Used when a logging statement has a call form of “logging.<logging
method>(format_string % (format_args…))”. Such calls should leave string
interpolation to the logging method itself and be written “logging.<logging
method>(format_string, format_args…)” so that the program may avoid
incurring the cost of the interpolation in those cases in which no message
will be logged. For more, see http://www.python.org/dev/peps/pep-0282/.



	logging-format-interpolation (W1202)

	Use % formatting in logging functions and pass the % parameters as arguments
Used when a logging statement has a call form of “logging.<logging
method>(format_string.format(format_args…))”. Such calls should use %
formatting instead, but leave interpolation to the logging function by passing
the parameters as arguments.













          

      

      

    

  

    
      
          
            
  
Optional Pylint checkers in the extensions module


Parameter documentation checker

If you document the parameters of your functions, methods and constructors and
their types systematically in your code this optional component might
be useful for you. Sphinx style, Google style, and Numpy style are supported.
(For some examples, see https://pypi.python.org/pypi/sphinxcontrib-napoleon .)

You can activate this checker by adding the line:

load-plugins=pylint.extensions.docparams





to the MASTER section of your .pylintrc.

This checker verifies that all function, method, and constructor parameters are
mentioned in the


	Sphinx param and type parts of the docstring:

def function_foo(x, y, z):
    '''function foo ...

    :param x: bla x
    :type x: int

    :param y: bla y
    :type y: float

    :param int z: bla z

    :return: sum
    :rtype: float
    '''
    return x + y + z







	or the Google style Args: part of the docstring:

def function_foo(x, y, z):
    '''function foo ...

    Args:
        x (int): bla x
        y (float): bla y

        z (int): bla z

    Returns:
        float: sum
    '''
    return x + y + z







	or the Numpy style Parameters part of the docstring:

def function_foo(x, y, z):
    '''function foo ...

    Parameters
    ----------
    x: int
        bla x
    y: float
        bla y

    z: int
        bla z

    Returns
    -------
    float
        sum
    '''
    return x + y + z









You’ll be notified of missing parameter documentation but also of
naming inconsistencies between the signature and the documentation which
often arise when parameters are renamed automatically in the code, but not in
the documentation.

By convention, constructor parameters are documented in the class docstring.
(__init__ and __new__ methods are considered constructors.):

class ClassFoo(object):
    '''Sphinx style docstring foo

    :param float x: bla x

    :param y: bla y
    :type y: int
    '''
    def __init__(self, x, y):
        pass

class ClassFoo(object):
    '''Google style docstring foo

    Args:
        x (float): bla x
        y (int): bla y
    '''
    def __init__(self, x, y):
        pass





In some cases, having to document all parameters is a nuisance, for instance if
many of your functions or methods just follow a common interface. To remove
this burden, the checker accepts missing parameter documentation if one of the
following phrases is found in the docstring:


	For the other parameters, see


	For the parameters, see




(with arbitrary whitespace between the words). Please add a link to the
docstring defining the interface, e.g. a superclass method, after “see”:

def callback(x, y, z):
    '''Sphinx style docstring for callback ...

    :param x: bla x
    :type x: int

    For the other parameters, see
    :class:`MyFrameworkUsingAndDefiningCallback`
    '''
    return x + y + z

def callback(x, y, z):
    '''Google style docstring for callback ...

    Args:
        x (int): bla x

    For the other parameters, see
    :class:`MyFrameworkUsingAndDefiningCallback`
    '''
    return x + y + z





Naming inconsistencies in existing parameter and their type documentations are
still detected.

By default, omitting the parameter documentation of a function altogether is
tolerated without any warnings. If you want to switch off this behavior
(forcing functions to document their parameters), set the option
accept-no-param-doc to no in your .pylintrc.

By default, omitting the exception raising documentation of a function
altogether is tolerated without any warnings. If you want to switch off this
behavior (forcing functions that raise exceptions to document them), set the
option accept-no-raise-doc to no in your .pylintrc.

By default, omitting the return documentation of a function altogether is
tolerated without any warnings. If you want to switch off this behavior
(forcing functions to document their returns), set the option
accept-no-return-doc to no in your .pylintrc.




Prohibit builtin checker

This used to be the bad-builtin core checker, but it was moved to
an extension instead. It can be used for finding prohibited used builtins,
such as map or filter, for which other alternatives exists.

If you want to control for what builtins the checker should warn about,
you can use the bad-functions option:

$ pylint a.py --load-plugins=pylint.extensions.bad_builtin --bad-functions=apply,reduce
...








Complexity checker

You can now use this plugin for finding complexity issues in your code base.

Activate it through pylint --load-plugins=pylint.extensions.mccabe. It introduces
a new warning, too-complex, which is emitted when a code block has a complexity
higher than a preestablished value, which can be controlled through the
max-complexity option, such as in this example:

$ cat a.py
def f10():
    """McCabe rating: 11"""
    myint = 2
    if myint == 5:
        return myint
    elif myint == 6:
        return myint
    elif myint == 7:
        return myint
    elif myint == 8:
        return myint
    elif myint == 9:
        return myint
    elif myint == 10:
        if myint == 8:
            while True:
                return True
        elif myint == 8:
            with myint:
                return 8
    else:
        if myint == 2:
            return myint
        return myint
    return myint
$ pylint a.py --load-plugins=pylint.extensions.mccabe
R:1: 'f10' is too complex. The McCabe rating is 11 (too-complex)
$ pylint a.py --load-plugins=pylint.extensions.mccabe --max-complexity=50
$











          

      

      

    

  

    
      
          
            
  
Configuration


Naming Styles

Pylint recognizes a number of different name types internally. With a few
exceptions, the type of the name is governed by the location the assignment to a
name is found in, and not the type of object assigned.


	module

	Module and package names, same as the file names.



	const

	Module-level constants, any variable defined at module level that is not bound to a class object.



	class

	Names in class statements, as well as names bound to class objects at module level.



	function

	Functions, toplevel or nested in functions or methods.



	method

	Methods, functions defined in class bodies. Includes static and class methods.



	attr

	Attributes created on class instances inside methods.



	argument

	Arguments to any function type, including lambdas.



	variable

	Local variables in function scopes.



	class-attribute

	Attributes defined in class bodies.



	inlinevar

	Loop variables in list comprehensions and generator expressions.





For each naming style, a separate regular expression matching valid names of
this type can be defined. By default, the regular expressions will enforce PEP8
names.

Regular expressions for the names are anchored at the beginning, any anchor for
the end must be supplied explicitly. Any name not matching the regular
expression will lead to an instance of invalid-name.


	
--module-rgx=<regex>

	Default value: [a-z_][a-z0-9_]{2,30}$






	
--const-rgx=<regex>

	Default value: [a-z_][a-z0-9_]{2,30}$






	
--class-rgx=<regex>

	Default value: '[A-Z_][a-zA-Z0-9]+$






	
--function-rgx=<regex>

	Default value: [a-z_][a-z0-9_]{2,30}$






	
--method-rgx=<regex>

	Default value: [a-z_][a-z0-9_]{2,30}$






	
--attr-rgx=<regex>

	Default value: [a-z_][a-z0-9_]{2,30}$






	
--argument-rgx=<regex>

	Default value: [a-z_][a-z0-9_]{2,30}$






	
--variable-rgx=<regex>

	Default value: [a-z_][a-z0-9_]{2,30}$






	
--class-attribute-rgx=<regex>

	Default value: ([A-Za-z_][A-Za-z0-9_]{2,30}|(__.*__))$






	
--inlinevar-rgx=<regex>

	Default value: [A-Za-z_][A-Za-z0-9_]*$






Multiple Naming Styles

Large code bases that have been worked on for multiple years often exhibit an
evolution in style as well. In some cases, modules can be in the same package,
but still have different naming style based on the stratum they belong to.
However, intra-module consistency should still be required, to make changes
inside a single file easier. For this case, Pylint supports regular expression
with several named capturing group.

Rather than emitting name warnings immediately, Pylint will determine the
prevalent naming style inside each module and enforce it on all names.

Consider the following (simplified) example:

pylint --function-rgx='(?:(?P<snake>[a-z_]+)|(?P<camel>_?[A-Z]+))$' sample.py





The regular expression defines two naming styles, snake for snake-case
names, and camel for camel-case names.

In sample.py, the function name on line 1 and 7 will mark the module
and enforce the match of named group snake for the remaining names in
the module:

def valid_snake_case(arg):
   ...

def InvalidCamelCase(arg):
   ...

def more_valid_snake_case(arg):
 ...





Because of this, the name on line 4 will trigger an invalid-name warning,
even though the name matches the given regex.

Matches named exempt or ignore can be used for non-tainting names, to
prevent built-in or interface-dictated names to trigger certain naming styles.


	
--name-group=<name1:name2:...,...>

	Default value: empty

Format: comma-separated groups of colon-separated names.

This option can be used to combine name styles. For example, function:method enforces that functions and methods use the same style, and a style triggered by either name type carries over to the other. This requires that the regular expression for the combined name types use the same group names.








Name Hints


	
--include-naming-hint=y|n

	Default: off

Include a hint for the correct name format with every invalid-name warning.

Name hints default to the regular expression, but can be separately configured with the --<name-type>-hint options.













          

      

      

    

  

    
      
          
            
  
Editor and IDE integration

To use Pylint with:



	Emacs [http://www.gnu.org/software/emacs/], see http://www.emacswiki.org/emacs/PythonProgrammingInEmacs#toc8,


	Vim [http://www.vim.org/], see http://www.vim.org/scripts/script.php?script_id=891,


	Eclipse [https://www.eclipse.org/] and PyDev [http://pydev.org], see http://pydev.org/manual_adv_pylint.html,


	Komodo [http://www.activestate.com/Products/Komodo/], see http://mateusz.loskot.net/posts/2006/01/15/running-pylint-from-komodo/,


	gedit [https://wiki.gnome.org/Apps/Gedit], see https://launchpad.net/gedit-pylint-2 or https://wiki.gnome.org/Apps/Gedit/PylintPlugin,


	WingIDE [http://www.wingware.com/], see http://www.wingware.com/doc/edit/pylint,


	PyCharm [http://www.jetbrains.com/pycharm/], see the section below,


	TextMate [http://macromates.com], see the section below







Pylint is integrated in:



	Eric [http://eric-ide.python-projects.org/] IDE, see the Project > Check menu,


	Spyder [http://code.google.com/p/spyderlib/], see http://packages.python.org/spyder/pylint.html,


	pyscripter [http://code.google.com/p/pyscripter/], see the Tool -> Tools menu.








Using Pylint thru flymake in Emacs

To enable flymake for Python, insert the following into your .emacs:

;; Configure flymake for Python
(when (load "flymake" t)
  (defun flymake-pylint-init ()
    (let* ((temp-file (flymake-init-create-temp-buffer-copy
                       'flymake-create-temp-inplace))
           (local-file (file-relative-name
                        temp-file
                        (file-name-directory buffer-file-name))))
      (list "epylint" (list local-file))))
  (add-to-list 'flymake-allowed-file-name-masks
               '("\\.py\\'" flymake-pylint-init)))

;; Set as a minor mode for Python
(add-hook 'python-mode-hook '(lambda () (flymake-mode)))





Above stuff is in pylint/elisp/pylint-flymake.el, which should be automatically
installed on Debian systems, in which cases you don’t have to put it in your .emacs file.

Other things you may find useful to set:

;; Configure to wait a bit longer after edits before starting
(setq-default flymake-no-changes-timeout '3)

;; Keymaps to navigate to the errors
(add-hook 'python-mode-hook '(lambda () (define-key python-mode-map "\C-cn" 'flymake-goto-next-error)))
(add-hook 'python-mode-hook '(lambda () (define-key python-mode-map "\C-cp" 'flymake-goto-prev-error)))





Finally, by default flymake only displays the extra information about the error when you
hover the mouse over the highlighted line. The following will use the minibuffer to display
messages when you the cursor is on the line.

;; To avoid having to mouse hover for the error message, these functions make flymake error messages
;; appear in the minibuffer
(defun show-fly-err-at-point ()
  "If the cursor is sitting on a flymake error, display the message in the minibuffer"
  (require 'cl)
  (interactive)
  (let ((line-no (line-number-at-pos)))
    (dolist (elem flymake-err-info)
      (if (eq (car elem) line-no)
      (let ((err (car (second elem))))
        (message "%s" (flymake-ler-text err)))))))

(add-hook 'post-command-hook 'show-fly-err-at-point)





Alternative, if you only wish to pollute the minibuffer after an explicit flymake-goto-* then use
the following instead of a post-command-hook

(defadvice flymake-goto-next-error (after display-message activate compile)
  "Display the error in the mini-buffer rather than having to mouse over it"
  (show-fly-err-at-point))

(defadvice flymake-goto-prev-error (after display-message activate compile)
  "Display the error in the mini-buffer rather than having to mouse over it"
  (show-fly-err-at-point))








Setup the MS Visual Studio .NET 2003 editor to call Pylint

[image: _images/vs2003_config.jpeg]
The output of Pylint is then shown in the “Output” pane of the editor.




Integrate Pylint with PyCharm

Install Pylint the usual way:

pip install pylint





Remember the path at which it’s installed:

which pylint





Within PyCharm:


	Navigate to the preferences window


	Select “External Tools”


	Click the plus sign at the bottom of the dialog to add a new external task


	In the dialog, populate the following fields:


	Name

	Pylint



	Description

	A Python source code analyzer which looks for programming errors, helps enforcing a coding standard and sniffs for some code smells.



	Synchronize files after execution

	unchecked



	Program

	/path/to/pylint



	Parameters

	$FilePath$







	Click OK




The option to check the current file with Pylint should now be available in Tools > External Tools > Pylint.




Integrate Pylint with TextMate

Install Pylint in the usual way:

pip install pylint





Install the Python bundle for TextMate [https://github.com/textmate/python.tmbundle]:


	select TextMate > Preferences


	select the Bundles tab


	find and tick the Python bundle in the list




You should now see it in Bundles > Python.

In Preferences, select the Variables tab. If a TM_PYCHECKER variable is not already listed, add
it, with the value pylint.

The default keyboard shortcut to run the syntax checker is Control-Shift-V - open a .py file
in Textmate, and try it.

You should see the output in a new window:


PyCheckMate 1.2 – Pylint 1.4.4

No config file found, using default configuration




Then all is well, and most likely Pylint will have expressed some opinions about your Python code
(or will exit with 0 if your code already conforms to its expectations).

If you receive a message:


Please install PyChecker, PyFlakes, Pylint, PEP 8 or flake8 for more extensive code checking.




That means that Pylint wasn’t found, which is likely an issue with command paths - TextMate needs
be looking for Pylint on the right paths.

Check where Pylint has been installed, using which:

$ which pylint
/usr/local/bin/pylint





The output will tell you where Pylint can be found; in this case, in /usr/local/bin.


	select TextMate > Preferences


	select the Variables tab


	find and check that a PATH variable exists, and that it contains the appropriate path (if
the path to Pylint were /usr/local/bin/pylint as above, then the variable would need to
contain /usr/local/bin). An actual example in this case might be
$PATH:/opt/local/bin:/usr/local/bin:/usr/texbin, which includes other paths.




… and try running Pylint again.







          

      

      

    

  

    
      
          
            
  
Plugins


Writing your own checker

You can find some simple examples in the examples
directory of the distribution (custom.py and custom_raw.py). I’ll try to
quickly explain the essentials here.

First, there are two kinds of checkers:


	raw checkers, which are analysing each module as a raw file stream


	ast checkers, which are working on an ast representation of the module




The ast representation used is an extension of the one provided with the
standard Python distribution in the ast package [http://docs.python.org/2/library/ast]. The extension
adds additional information and methods on the tree nodes to ease
navigation and code introspection.

An AST checker is a visitor, and should implement
visit_<lowered class name> or leave_<lowered class name>
methods for the nodes it’s interested in. To get description of the different
classes used in an ast tree, look at the ast package [http://docs.python.org/2/library/ast] documentation.
Checkers are ordered by priority. For each module, Pylint’s engine:


	give the module source file as a stream to raw checkers


	get an ast representation for the module


	make a depth first descent of the tree, calling visit_<> on each AST
checker when entering a node, and leave_<> on the back traversal




Notice that the source code is probably the best source of
documentation, it should be clear and well documented. Don’t hesitate to
ask for any information on the code-quality mailing list.




Why write a plugin?

Pylint is a static analysis tool and Python is a dynamically typed language.
So there will be cases where Pylint cannot analyze files properly (this problem
can happen in statically typed languages also if reflection or dynamic
evaluation is used). Plugin is a way to tell Pylint how to handle such cases,
since only the user would know what needs to be done.




Example

Let us run Pylint on a module from the Python source: warnings.py [http://hg.python.org/cpython/file/2.7/Lib/warnings.py] and see what happens:

amitdev$ pylint -E Lib/warnings.py
E:297,36: Instance of 'WarningMessage' has no 'message' member (no-member)
E:298,36: Instance of 'WarningMessage' has no 'filename' member (no-member)
E:298,51: Instance of 'WarningMessage' has no 'lineno' member (no-member)
E:298,64: Instance of 'WarningMessage' has no 'line' member (no-member)





Did we catch a genuine error? Let’s open the code and look at WarningMessage class:

class WarningMessage(object):

  """Holds the result of a single showwarning() call."""

  _WARNING_DETAILS = ("message", "category", "filename", "lineno", "file",
                      "line")

  def __init__(self, message, category, filename, lineno, file=None,
                  line=None):
    local_values = locals()
    for attr in self._WARNING_DETAILS:
      setattr(self, attr, local_values[attr])
    self._category_name = category.__name__ if category else None

  def __str__(self):
    ...





Ah, the fields (message, category etc) are not defined statically on the class.
Instead they are added using setattr. Pylint would have a tough time figuring
this out.




Enter Plugin

We can write a plugin to tell Pylint about how to analyze this properly. A
plugin is a module which should have a function register and takes the
lint [https://bitbucket.org/logilab/pylint/src/f2acea7b640def0237513f66e3de5fa3de73f2de/lint.py?at=default] module as input. So a basic hello-world plugin can be implemented as:

# Inside hello_plugin.py
def register(linter):
  print 'Hello world'





We can run this plugin by placing this module in the PYTHONPATH and invoking as:

amitdev$ pylint -E --load-plugins hello_plugin foo.py
Hello world





Back to our example: one way to fix that would be to transform the WarningMessage class
and set the attributes using a plugin so that Pylint can see them. This can be done by
registering a transform function. We can transform any node in the parsed AST like
Module, Class, Function etc. In our case we need to transform a class. It can be done so:

from astroid import MANAGER
from astroid import scoped_nodes

def register(linter):
  pass

def transform(cls):
  if cls.name == 'WarningMessage':
    import warnings
    for f in warnings.WarningMessage._WARNING_DETAILS:
      cls.locals[f] = [scoped_nodes.Class(f, None)]

MANAGER.register_transform(scoped_nodes.Class, transform)





Let’s go through the plugin. First, we need to register a class transform, which
is done via the register_transform function in MANAGER. It takes the node
type and function as parameters. We need to change a class, so we use scoped_nodes.Class.
We also pass a transform function which does the actual transformation.

transform function is simple as well. If the class is WarningMessage then we
add the attributes to its locals (we are not bothered about type of attributes, so setting
them as class will do. But we could set them to any type we want). That’s it.

Note: We don’t need to do anything in the register function of the plugin since we
are not modifying anything in the linter itself.

Lets run Pylint with this plugin and see:

amitdev$ pylint -E --load-plugins warning_plugin Lib/warnings.py
amitdev$





All the false positives associated with WarningMessage are now gone. This is just
an example, any code transformation can be done by plugins. See nodes [https://bitbucket.org/logilab/astroid/src/64026ffc0d94fe09e4bdc2bf5efaab29444645e7/nodes.py?at=default] and scoped_nodes [https://bitbucket.org/logilab/astroid/src/64026ffc0d94fe09e4bdc2bf5efaab29444645e7/scoped_nodes.py?at=default]
for details about all node types that can be transformed.







          

      

      

    

  

    
      
          
            
  
Frequently Asked Questions


1. About Pylint


1.1 What is Pylint?

Pylint is a static code checker [http://en.wikipedia.org/wiki/Static_code_analysis], meaning it can analyse your code without
actually running it. Pylint checks for errors, tries to enforce a coding
standard, and tries to enforce a coding style.




1.2 How is Pylint different from Pychecker?

A major difference between Pylint and Pychecker [http://pychecker.sf.net] is that Pylint checks for
style issues, while Pychecker explicitly does not. There are a few other
differences, such as the fact that Pylint does not import live modules while
Pychecker does (see 6.2 Why does Pychecker catch problems with imports that
Pylint doesn’t?).




1.3 Who wrote Pylint?

Pylint’s main author and maintainer for the first ten years of its life has been
Sylvain Thénault, while he worked at Logilab [http://www.logilab.fr/] where the project was born.
The project is now under the umbrella of the PyCQA [https://github.com/PyCQA/] organization, where it is
maintained by Claudiu Popa and contributors.

For a full list of contributors, see the “Contributors” file under’s Pylint’s
repository




1.4 Who uses Pylint?

Everybody knows someone who uses Pylint.






2. Installation


2.1 How do I install Pylint?

Everything should be explained on http://docs.pylint.org/installation




2.2 What kind of versioning system does Pylint use?

Pylint uses the Mercurial [http://mercurial.selenic.com/] distributed version control system. The URL of the
repository is: https://bitbucket.org/logilab/pylint. To get the latest version of
Pylint from the repository, simply invoke

hg clone https://bitbucket.org/logilab/pylint








2.3 What are Pylint’s dependencies?

Pylint depends on astroid [https://github.com/PyCQA/astroid] and a couple of other packages.
It should be compatible with any Python version greater than 2.7.0 and
it is also working on PyPy.




2.4 What versions of Python is Pylint supporting?

Since Pylint 1.4, we support only Python 2.7+ and Python 3.3+.
Using this strategy really helps in maintaining a code base compatible
with both versions and from this benefits not only the maintainers,
but the end users as well, because it’s easier to add and test
new features.






3. Running Pylint


3.1 Can I give pylint a file as an argument instead of a module?

Pylint expects the name of a package or module as its argument. As a
convenience,
you can give it a file name if it’s possible to guess a module name from
the file’s path using the python path. Some examples :

“pylint mymodule.py” should always work since the current working
directory is automatically added on top of the python path

“pylint directory/mymodule.py” will work if “directory” is a python
package (i.e. has an __init__.py file), an implicit namespace package
or if “directory” is in the python path.

“pylint /whatever/directory/mymodule.py” will work if either:



	“/whatever/directory” is in the python path


	your cwd is “/whatever/directory”


	“directory” is a python package and “/whatever” is in the python
path


	“directory” is an implicit namespace package and is in the python path.


	“directory” is a python package and your cwd is “/whatever” and so
on…










3.2 Where is the persistent data stored to compare between successive runs?

Analysis data are stored as a pickle file in a directory which is
localized using the following rules:


	value of the PYLINTHOME environment variable if set


	
	“.pylint.d” subdirectory of the user’s home directory if it is found

	(not always findable on Windows platforms)







	“.pylint.d” directory in the current directory







3.3 How do I find the option name (for pylintrc) corresponding to a specific command line option?

You can always generate a sample pylintrc file with –generate-rcfile
Every option present on the command line before this will be included in
the rc file

For example:

pylint --disable=bare-except,invalid-name --class-rgx='[A-Z][a-z]+' --generate-rcfile








3.4 I’d rather not run Pylint from the command line. Can I integrate it with my editor?

Much probably. Read http://docs.pylint.org/ide-integration






4. Message Control


4.1 Is it possible to locally disable a particular message?

Yes, this feature has been added in Pylint 0.11. This may be done by
adding “#pylint: disable=some-message,another-one” at the desired block level
or at the end of the desired line of code




4.2 Is there a way to disable a message for a particular module only?

Yes, you can disable or enable (globally disabled) messages at the
module level by adding the corresponding option in a comment at the
top of the file:

# pylint: disable=wildcard-import, method-hidden
# pylint: enable=too-many-lines








4.3 How can I tell Pylint to never check a given module?

With Pylint < 0.25, add “#pylint: disable-all” at the beginning of the
module. Pylint 0.26.1 and up have renamed that directive to
“#pylint: skip-file” (but the first version will be kept for backward
compatibility).

In order to ease finding which modules are ignored a Information-level message
file-ignored is emited. With recent versions of Pylint, if you use the old
syntax, an additional deprecated-disable-all message is emited.




4.4 Do I have to remember all these numbers?

No, starting from 0.25.3, you can use symbolic names for messages:

# pylint: disable=fixme, line-too-long








4.5 I have a callback function where I have no control over received arguments. How do I avoid getting unused argument warnings?

Prefix (ui) the callback’s name by cb_, as in cb_onclick(…). By
doing so arguments usage won’t be checked. Another solution is to
use one of the names defined in the “dummy-variables” configuration
variable for unused argument (“_” and “dummy” by default).




4.6 What is the format of the configuration file?

Pylint uses ConfigParser from the standard library to parse the configuration
file.  It means that if you need to disable a lot of messages, you can use
tricks like:

# disable wildcard-import, method-hidden and too-many-lines because I do
# not want it
disable= wildcard-import,
 method-hidden,
 too-many-lines










5. Classes and Inheritance


5.1 When is Pylint considering a class as an abstract class?

A class is considered as an abstract class if at least one of its
methods is doing nothing but raising NotImplementedError.




5.2 How do I avoid “access to undefined member” messages in my mixin classes?

To do so you have to set the ignore-mixin-members option to
“yes” (this is the default value) and to name your mixin class with
a name which ends with “mixin” (whatever case).






6. Troubleshooting


6.1 Pylint gave my code a negative rating out of ten. That can’t be right!

Even though the final rating Pylint renders is nominally out of ten, there’s no
lower bound on it. By default, the formula to calculate score is

10.0 - ((float(5 * error + warning + refactor + convention) / statement) * 10)





However, this option can be changed in the Pylint rc file. If having negative
values really bugs you, you can set the formula to be the maximum of 0 and the
above expression.




6.2 Why does Pychecker catch problems with imports that Pylint doesn’t?

Pychecker and Pylint use different approaches.  pychecker
imports the modules and rummages around in the result, hence it sees my
mangled sys.path.  Pylint doesn’t import any of the candidate modules and
thus doesn’t include any of import’s side effects (good and bad).  It
traverses an AST representation of the code.




6.3 Pylint keeps crashing with Maximum recursion depth exceeded

Pylint can crash with this error if you have a string in your analyzed
program, created by joining a lot of strings with the addition operator.
Due to how Pylint works, visiting nodes on a AST tree and due to how
the BinOp node is represented (the node which represents the string ‘1+1’
for instance), the same visit method will be called over and over again, leading
to a maximum recursion error. You can alleviate this problem by passing
the flag –optimize-ast=y to Pylint. This will activate an optimization
which will transform such AST subtrees into the final resulting string.
This flag is off by default. If this is not the case, please report a bug!




6.4 I think I found a bug in Pylint. What should I do?

Read http://docs.pylint.org/contribute#bug-reports-feedback




6.5 I have a question about Pylint that isn’t answered here.

Read http://docs.pylint.org/contribute#mailing-lists









          

      

      

    

  

    
      
          
            
  
Some projects using Pylint

The following projects are known to use Pylint to help develop better
Python code:


	edX (https://github.com/edx)


	qutebrowser (https://github.com/The-Compiler/qutebrowser)


	Odoo (https://github.com/OCA)


	Landscape.io (https://github.com/landscapeio/)


	Codacy (https://github.com/Codacy/)


	SaltStack (https://github.com/saltstack)


	many more…








          

      

      

    

  

    
      
          
            

Index



 Symbols
 | A
 | C
 


Symbols


  	
      	
    --argument-rgx=<regex>

      
        	command line option


      


      	
    --attr-rgx=<regex>

      
        	command line option


      


      	
    --class-attribute-rgx=<regex>

      
        	command line option


      


      	
    --class-rgx=<regex>

      
        	command line option


      


      	
    --const-rgx=<regex>

      
        	command line option


      


      	
    --function-rgx=<regex>

      
        	command line option


      


  

  	
      	
    --include-naming-hint=y|n

      
        	command line option


      


      	
    --inlinevar-rgx=<regex>

      
        	command line option


      


      	
    --method-rgx=<regex>

      
        	command line option


      


      	
    --module-rgx=<regex>

      
        	command line option


      


      	
    --name-group=<name1:name2:...,...>

      
        	command line option


      


      	
    --variable-rgx=<regex>

      
        	command line option


      


  





A


  	
      	article (built-in class)


  





C


  	
      	
    command line option

      
        	--argument-rgx=<regex>


        	--attr-rgx=<regex>


        	--class-attribute-rgx=<regex>


        	--class-rgx=<regex>


        	--const-rgx=<regex>


        	--function-rgx=<regex>


        	--include-naming-hint=y|n


        	--inlinevar-rgx=<regex>


        	--method-rgx=<regex>


        	--module-rgx=<regex>


        	--name-group=<name1:name2:...,...>


        	--variable-rgx=<regex>


      


  







          

      

      

    

  

    
      
          
            
  

	Pylint features







          

      

      

    

  _static/up.png





_static/vs2003_config.jpeg
External Tools

Menu Contents:

[ActiveX Corrol Test Cobrtainer dd
error Loothup
ATUMEC arace Tool Delete
oLE{COM Object aviewer =
E

Create saUID

Pythonzs Mave Lp

LB B

i2ve Do

e e
s EErrrr
o =
|

[ Use Qutput window [~ Prompt for arguments [ Close on et

[ e






_images/vs2003_config.jpeg
External Tools

Menu Contents:

[ActiveX Corrol Test Cobrtainer dd
error Loothup
ATUMEC arace Tool Delete
oLE{COM Object aviewer =
E

Create saUID

Pythonzs Mave Lp

LB B

i2ve Do

e e
s EErrrr
o =
|

[ Use Qutput window [~ Prompt for arguments [ Close on et

[ e






_static/ajax-loader.gif





_static/comment-bright.png





_static/comment-close.png





nav.xhtml

    
      Table of Contents


      
        		
          Pylint User Manual
        


        		
          Introduction
        


        		
          Contribute
        


        		
          What’s New in Pylint
          
            		
              What’s New In Pylint 1.6
            


            		
              Pylint NEWS
            


          


        


        		
          A Beginner’s Guide to Code Standards in Python - Pylint Tutorial
        


        		
          Installation
        


        		
          Running Pylint
        


        		
          Pylint output
        


        		
          Messages control
        


        		
          Pylint features
        


        		
          Optional Pylint checkers in the extensions module
        


        		
          Configuration
        


        		
          Editor and IDE integration
        


        		
          Plugins
        


        		
          Frequently Asked Questions
        


        		
          Some projects using Pylint
        


      


    
  

_static/down.png





_static/comment.png





_static/down-pressed.png





_static/plus.png





_static/file.png





_static/minus.png





_static/up-pressed.png





