

    
      
          
            
  
Pylint User Manual



	Introduction

	Tutorial

	User Guide
	Installation

	Running Pylint

	Pylint output

	Messages control

	Configuration

	Editor and IDE integration





	How To Guides
	How to Write a Checker

	How To Write a Pylint Plugin

	Transform plugins





	Technical Reference
	Startup and the Linter Class

	Checkers

	Optional Pylint checkers in the extensions module

	Pylint features

	Pylint and C extensions





	Development
	Contributing





	Frequently Asked Questions

	Some projects using Pylint

	What's New in Pylint
	What's New in Pylint 2.3

	What's New in Pylint 2.2

	What's New in Pylint 2.1

	What's New in Pylint 2.0

	What's New In Pylint 1.9

	What's New In Pylint 1.8

	What's New In Pylint 1.7

	What's New In Pylint 1.6

	Pylint's ChangeLog













          

      

      

    

  

    
      
          
            
  
Introduction


What is Pylint?

Pylint is a tool that checks for errors in Python code, tries to enforce a
coding standard and looks for code smells [https://martinfowler.com/bliki/CodeSmell.html]. It can also look for certain type
errors, it can recommend suggestions about how particular blocks
can be refactored and can offer you details about the code's complexity.

Other similar projects would include pychecker [http://pychecker.sf.net] (now defunct), pyflakes [https://github.com/pyflakes/pyflakes],
flake8 [https://gitlab.com/pycqa/flake8/], and mypy [https://github.com/JukkaL/mypy]. The default coding style used by Pylint is close to PEP 8 [https://www.python.org/dev/peps/pep-0008/].

Pylint will display a number of messages as it analyzes the code and it can
also be used for displaying some statistics about the number of warnings and
errors found in different files. The messages are classified under various
categories such as errors and warnings.

Last but not least, the code is given an overall mark, based on the number and
severity of the warnings and errors.




What Pylint is not?

What Pylint says is not to be taken as gospel and Pylint isn't smarter than you
are: it may warn you about things that you have conscientiously done.

Pylint tries hard to report as few false positives as possible for errors, but
it may be too verbose with warnings. That's for example because it tries to
detect things that may be dangerous in a context, but are not in others, or
because it checks for some things that you don't care about. Generally, you
shouldn't expect Pylint to be totally quiet about your code, so don't
necessarily be alarmed if it gives you a hell lot of messages for your project!

The best way to tackle pylint's verboseness is to:


	enable or disable the messages or message categories that you want to be
activated or not for when pylint is analyzing your code.
This can be done easily through a command line flag. For instance, disabling
all convention messages is simple as a --disable=C option added to pylint
command.


	create a custom configuration file, tailored to your needs. You can generate
one using pylint's command --generate-rcfile.










          

      

      

    

  

    
      
          
            
  
Tutorial


	Author

	Robert Kirkpatrick






Intro

Beginner to coding standards?  Pylint can be your guide to reveal what's really
going on behind the scenes and help you to become a more aware programmer.

Sharing code is a rewarding endeavor.  Putting your code out there can be
either an act of philanthropy, coming of age, or a basic extension of belief
in open source.  Whatever the motivation, your good intentions may not have the
desired outcome if people find your code hard to use or understand.  The Python
community has formalized some recommended programming styles to help everyone
write code in a common, agreed-upon style that makes the most sense for shared
code.  This style is captured in PEP 8 [http://www.python.org/dev/peps/pep-0008/], the "Style Guide for Python Code".
Pylint can be a quick and easy way of
seeing if your code has captured the essence of PEP 8 [http://www.python.org/dev/peps/pep-0008/] and is therefore
friendly to other potential users.

Perhaps you're not ready to share your code but you'd like to learn a bit more
about writing better code and don't know where to start.  Pylint can tell you
where you may have run astray and point you in the direction to figure out what
you have done and how to do better.

This tutorial is all about approaching coding standards with little or no
knowledge of in-depth programming or the code standards themselves.  It's the
equivalent of skipping the manual and jumping right in.

My command line prompt for these examples is:

robertk01 Desktop$








Getting Started

Running Pylint with no arguments will invoke the help dialogue and give you an
idea of the arguments available to you.  Do that now, i.e.:

robertk01 Desktop$ pylint
...
a bunch of stuff
...





A couple of the options that we'll focus on here are:

Commands:
  --help-msg=<msg-id>
  --generate-rcfile
Messages control:
  --disable=<msg-ids>
Reports:
  --reports=<y_or_n>
  --output-format=<format>





If you need more detail, you can also ask for an even longer help message,
like so:

robertk01 Desktop$ pylint --long-help
...
Even more stuff
...





Pay attention to the last bit of this longer help output.  This gives you a
hint of what
Pylint is going to pick on:

Output:
   Using the default text output, the message format is :
  MESSAGE_TYPE: LINE_NUM:[OBJECT:] MESSAGE
  There are 5 kind of message types :
  * (C) convention, for programming standard violation
  * (R) refactor, for bad code smell
  * (W) warning, for python specific problems
  * (E) error, for probable bugs in the code
  * (F) fatal, if an error occurred which prevented pylint from doing
  further processing.





When Pylint is first run on a fresh piece of code, a common complaint is that it
is too noisy.  The current default configuration is set to enforce all possible
warnings.  We'll use some of the options I noted above to make it suit your
preferences a bit better (and thus make it emit messages only when needed).




Your First Pylint'ing

We'll use a basic Python script as fodder for our tutorial.
The starting code we will use is called simplecaeser.py and is here in its
entirety:

 1  #!/usr/bin/env python3
 2
 3  import string
 4
 5  shift = 3
 6  choice = input("would you like to encode or decode?")
 7  word = input("Please enter text")
 8  letters = string.ascii_letters + string.punctuation + string.digits
 9  encoded = ''
10  if choice == "encode":
11      for letter in word:
12          if letter == ' ':
13              encoded = encoded + ' '
14          else:
15              x = letters.index(letter) + shift
16              encoded=encoded + letters[x]
17  if choice == "decode":
18      for letter in word:
19          if letter == ' ':
20              encoded = encoded + ' '
21          else:
22              x = letters.index(letter) - shift
23              encoded = encoded + letters[x]
24
25  print(encoded)





Let's get started.

If we run this:

robertk01 Desktop$ pylint simplecaeser.py
************* Module simplecaesar
simplecaesar.py:16:19: C0326: Exactly one space required around assignment
            encoded=encoded + letters[x]
                   ^ (bad-whitespace)
simplecaesar.py:1:0: C0111: Missing module docstring (missing-docstring)
simplecaesar.py:5:0: C0103: Constant name "shift" doesn't conform to UPPER_CASE naming style (invalid-name)
simplecaesar.py:6:0: C0103: Constant name "choice" doesn't conform to UPPER_CASE naming style (invalid-name)
simplecaesar.py:7:0: C0103: Constant name "word" doesn't conform to UPPER_CASE naming style (invalid-name)
simplecaesar.py:8:0: C0103: Constant name "letters" doesn't conform to UPPER_CASE naming style (invalid-name)
simplecaesar.py:9:0: C0103: Constant name "encoded" doesn't conform to UPPER_CASE naming style (invalid-name)

-----------------------------------
Your code has been rated at 6.32/10





Previous experience taught me that the default output for the messages
needed a bit more info.  We can see the second line is:

"simplecaesar.py:1:0: C0111: Missing module docstring (missing-docstring)"





This basically means that line 1 violates a convention C0111.  It's telling me I really should have a docstring.  I agree, but what if I didn't fully understand what rule I violated.  Knowing only that I violated a convention
isn't much help if I'm a newbie. Another piece of information there is the
message symbol between parens, missing-docstring here.

If I want to read up a bit more about that, I can go back to the
command line and try this:

robertk01 Desktop$ pylint --help-msg=missing-docstring
:missing-docstring (C0111): *Missing %s docstring*
Used when a module, function, class or method has no docstring.Some special
methods like __init__ doesn't necessary require a docstring. This message
belongs to the basic checker.





Yeah, ok. That one was a bit of a no-brainer, but I have run into error messages
that left me with no clue about what went wrong, simply because I was unfamiliar
with the underlying mechanism of code theory.  One error that puzzled my newbie
mind was:

:too-many-instance-attributes (R0902): *Too many instance attributes (%s/%s)*





I get it now thanks to Pylint pointing it out to me.  If you don't get that one,
pour a fresh cup of coffee and look into it - let your programmer mind grow!




The Next Step

Now that we got some configuration stuff out of the way, let's see what we can
do with the remaining warnings.

If we add a docstring to describe what the code is meant to do that will help.
There are 5 invalid-name messages that we will get to later.  Lastly, I
violated the convention of using spaces around an operator such as = so I'll
fix that too. To sum up, I'll add a docstring to line 2, and put spaces around
the = sign on line 16.

Here is the updated code:

 1  #!/usr/bin/env python3
 2  """This script prompts a user to enter a message to encode or decode
 3  using a classic Caeser shift substitution (3 letter shift)"""
 4
 5  import string
 6
 7  shift = 3
 8  choice = input("would you like to encode or decode?")
 9  word = input("Please enter text")
10  letters = string.ascii_letters + string.punctuation + string.digits
11  encoded = ''
12  if choice == "encode":
13      for letter in word:
14          if letter == ' ':
15              encoded = encoded + ' '
16          else:
17              x = letters.index(letter) + shift
18              encoded = encoded + letters[x]
19  if choice == "decode":
20      for letter in word:
21          if letter == ' ':
22              encoded = encoded + ' '
23          else:
24              x = letters.index(letter) - shift
25              encoded = encoded + letters[x]
26
27  print(encoded)





Here is what happens when we run it:

robertk01 Desktop$ pylint simplecaeser.py
************* Module simplecaesar
simplecaesar.py:7:0: C0103: Constant name "shift" doesn't conform to UPPER_CASE naming style (invalid-name)
simplecaesar.py:8:0: C0103: Constant name "choice" doesn't conform to UPPER_CASE naming style (invalid-name)
simplecaesar.py:9:0: C0103: Constant name "word" doesn't conform to UPPER_CASE naming style (invalid-name)
simplecaesar.py:10:0: C0103: Constant name "letters" doesn't conform to UPPER_CASE naming style (invalid-name)
simplecaesar.py:11:0: C0103: Constant name "encoded" doesn't conform to UPPER_CASE naming style (invalid-name)

------------------------------------------------------------------
Your code has been rated at 7.37/10 (previous run: 6.32/10, +1.05)





Nice! Pylint told us how much our code rating has improved since our last run, and we're down to just the invalid-name messages.

There are fairly well defined conventions around naming things like instance
variables, functions, classes, etc.  The conventions focus on the use of
UPPERCASE and lowercase as well as the characters that separate multiple words
in the name.  This lends itself well to checking via a regular expression, thus
the should match (([A-Z_][A-Z1-9_]*)|(__.*__))$.

In this case Pylint is telling me that those variables appear to be constants
and should be all UPPERCASE. This is an in-house convention that has lived with Pylint
since its inception. You too can create your own in-house naming
conventions but for the purpose of this tutorial, we want to stick to the PEP 8 [http://www.python.org/dev/peps/pep-0008/]
standard. In this case, the variables I declared should follow the convention
of all lowercase.  The appropriate rule would be something like:
"should match [a-z_][a-z0-9_]{2,30}$".  Notice the lowercase letters in the
regular expression (a-z versus A-Z).

If we run that rule using a --const-rgx='[a-z\_][a-z0-9\_]{2,30}$' option, it
will now be quite quiet:

robertk01 Desktop$ pylint --const-rgx='[a-z_][a-z0-9_]{2,30}$' simplecaesar.py

-------------------------------------------------------------------
Your code has been rated at 10.00/10 (previous run: 7.37/10, +2.63)





Regular expressions can be quite a beast so take my word on this particular
example but go ahead and read up [http://docs.python.org/library/re.html] on them if you want.


Tip

It would really be a pain to specify that regex on the command line all the time, particularly if we're using many other options.
That's what a configuration file is for. We can configure our Pylint to
store our options for us so we don't have to declare them on the command line.  Using a configuration file is a nice way of formalizing your rules and
quickly sharing them with others. Invoking pylint --generate-rcfile will create a sample rcfile with all the options set and explained in comments.



That's it for the basic intro. More tutorials will follow.







          

      

      

    

  

    
      
          
            
  
User Guide



	Installation

	Running Pylint

	Pylint output

	Messages control

	Configuration

	Editor and IDE integration









          

      

      

    

  

    
      
          
            
  
Installation


Python packages

Pylint should be easily installable using pip.

pip install pylint








Source distribution installation

From the source distribution, extract the tarball, go to the extracted
directory and simply run

python setup.py install





Or you can install it in editable mode, using

python setup.py develop











          

      

      

    

  

    
      
          
            
  
Running Pylint


Invoking Pylint

Pylint is meant to be called from the command line. The usage is

pylint [options] modules_or_packages





You should give Pylint the name of a python package or module, or some number
of packages or modules. Pylint
will not import this package or module, though uses Python internals
to locate them and as such is subject to the same rules and configuration.
You should pay attention to your PYTHONPATH, since it is a common error
to analyze an installed version of a module instead of the
development version.

It is also possible to analyze Python files, with a few
restrictions. The thing to keep in mind is that Pylint will try to
convert the file name to a module name, and only be able to process
the file if it succeeds.

pylint mymodule.py





should always work since the current working
directory is automatically added on top of the python path

pylint directory/mymodule.py





will work if directory is a python package (i.e. has an __init__.py
file or it is an implicit namespace package) or if "directory" is in the
python path.

For more details on this see the Frequently Asked Questions.

It is also possible to call Pylint from another Python program,
thanks to the Run() function in the pylint.lint module
(assuming Pylint options are stored in a list of strings pylint_options) as:

import pylint.lint
pylint_opts = ['--version']
pylint.lint.Run(pylint_opts)





To silently run Pylint on a module_name.py module,
and get its standard output and error:

from pylint import epylint as lint
(pylint_stdout, pylint_stderr) = lint.py_run('module_name.py', return_std=True)








Command line options

First of all, we have two basic (but useful) options.


	--version

	show program's version number and exit



	-h, --help

	show help about the command line options





Pylint is architected around several checkers. You can disable a specific
checker or some of its messages or message categories by specifying
--disable=<symbol>. If you want to enable only some checkers or some
message symbols, first use --disable=all then
--enable=<symbol> with <symbol> being a comma-separated list of checker
names and message symbols. See the list of available features for a
description of provided checkers with their functionalities.
The --disable and --enable options can be used with comma-separated lists
mixing checkers, message ids and categories like -d C,W,no-error,design

It is possible to disable all messages with --disable=all. This is
useful to enable only a few checkers or a few messages by first
disabling everything, and then re-enabling only what you need.

Each checker has some specific options, which can take either a yes/no
value, an integer, a python regular expression, or a comma-separated
list of values (which are generally used to override a regular
expression in special cases). For a full list of options, use --help

Specifying all the options suitable for your setup and coding
standards can be tedious, so it is possible to use a configuration file to
specify the default values.  You can specify a configuration file on the
command line using the --rcfile option.  Otherwise, Pylint searches for a
configuration file in the following order and uses the first one it finds:


	pylintrc in the current working directory


	.pylintrc in the current working directory


	If the current working directory is in a Python module, Pylint searches up the hierarchy of Python modules until it finds a pylintrc file. This allows you to specify coding standards on a module-by-module basis.  Of course, a directory is judged to be a Python module if it contains an __init__.py file.


	The file named by environment variable PYLINTRC


	if you have a home directory which isn't /root:


	.pylintrc in your home directory


	.config/pylintrc in your home directory






	/etc/pylintrc




The --generate-rcfile option will generate a commented configuration file
on standard output according to the current configuration and exit. This
includes:


	Any configuration file found as explained above


	Options appearing before --generate-rcfile on the Pylint command line




Of course you can also start with the default values and hand-tune the
configuration.

Other useful global options include:


	--ignore=<file[,file...]>

	Add files or directories to the blacklist. They
should be base names, not paths.



	--output-format=<format>

	Select output format (text, json, custom).



	--msg-template=<template>

	Modify text output message template.



	--list-msgs

	Generate pylint's messages.



	--full-documentation

	Generate pylint's full documentation, in reST
format.








Parallel execution

It is possible to speed up the execution of Pylint. If the running computer
has more CPUs than one, then the work for checking all files could be spread across all
cores via Pylints's sub-processes.
This functionality is exposed via the -j command-line parameter.
If the provided number is 0, then the total number of CPUs will be autodetected and used.

Example:

pylint -j 4 mymodule1.py mymodule2.py mymodule3.py mymodule4.py





This will spawn 4 parallel Pylint sub-process, where each provided module will
be checked in parallel. Discovered problems by checkers are not displayed
immediately. They are shown just after checking a module is complete.

There are some limitations in running checks in parallel in the current
implementation. It is not possible to use custom plugins
(i.e. --load-plugins option), nor it is not possible to use
initialization hooks (i.e. the --init-hook option).




Exit codes

Pylint returns bit-encoded exit codes. If applicable, the table below lists the related
stderr stream message output.








	exit code

	meaning

	stderr stream message





	0

	no error

	


	1

	fatal message issued

	


	2

	error message issued

	


	4

	warning message issued

	


	8

	refactor message issued

	


	16

	convention message issued

	


	32

	usage error

	
	"internal error while receiving resultsfrom child linter" "Error occurred,
stopping the linter."


	"<return of linter.help()>"


	"Jobs number <#> should be greater than 0"
















          

      

      

    

  

    
      
          
            
  
Pylint output

The default format for the output is raw text. You can change this by passing
pylint the --output-format=<value> option. Possible values are: json,
parseable, colorized and msvs (visual studio).

Moreover you can customize the exact way information are displayed using the
--msg-template=<format string> option. The format string uses the
Python new format syntax [http://docs.python.org/2/library/string.html#formatstrings] and the following fields are available :


	path

	relative path to the file



	abspath

	absolute path to the file



	line

	line number



	column

	column number



	module

	module name



	obj

	object within the module (if any)



	msg

	text of the message



	msg_id

	the message code (eg. I0011)



	symbol

	symbolic name of the message (eg. locally-disabled)



	C

	one letter indication of the message category



	category

	fullname of the message category





For example, the former (pre 1.0) default format can be obtained with:

pylint --msg-template='{msg_id}:{line:3d},{column}: {obj}: {msg}'





A few other examples:


	the default format:

{path}:{line}:{column}: {msg_id}: {msg} ({symbol})







	Visual Studio compatible format (former 'msvs' output format):

{path}({line}): [{msg_id}{obj}] {msg}







	Parseable (Emacs and all, former 'parseable' output format) format:

{path}:{line}: [{msg_id}({symbol}), {obj}] {msg}










Source code analysis section

For each python module, Pylint will first display a few '*' characters followed
by the name of the module. Then, a number of messages with the following format:

MESSAGE_TYPE: LINE_NUM:[OBJECT:] MESSAGE





You can get another output format, useful since it's recognized by
most editors or other development tools using the --output-format=parseable
option.

The message type can be:



	[I]nformational messages that Pylint emits (do not contribute to your analysis score)


	[R]efactor for a "good practice" metric violation


	[C]onvention for coding standard violation


	[W]arning for stylistic problems, or minor programming issues


	[E]rror for important programming issues (i.e. most probably bug)


	[F]atal for errors which prevented further processing







Sometimes the line of code which caused the error is displayed with
a caret pointing to the error. This may be generalized in future
versions of Pylint.

Example (extracted from a run of Pylint on itself...):

************* Module pylint.checkers.format
W: 50: Too long line (86/80)
W:108: Operator not followed by a space
     print >>sys.stderr, 'Unable to match %r', line
            ^
W:141: Too long line (81/80)
W: 74:searchall: Unreachable code
W:171:FormatChecker.process_tokens: Redefining built-in (type)
W:150:FormatChecker.process_tokens: Too many local variables (20/15)
W:150:FormatChecker.process_tokens: Too many branches (13/12)








Reports section

Following the analysis message, Pylint can display a set of reports,
each one focusing on a particular aspect of the project, such as number
of messages by categories, modules dependencies. These features can
be enabled through the --reports=y option, or its shorthand
version -rn.

For instance, the metrics report displays summaries gathered from the
current run.



	the number of processed modules


	for each module, the percentage of errors and warnings


	the total number of errors and warnings


	percentage of classes, functions and modules with docstrings, and
a comparison from the previous run


	percentage of classes, functions and modules with correct name
(according to the coding standard), and a comparison from the
previous run


	a list of external dependencies found in the code, and where they appear










Score section

Finally, Pylint displays a global evaluation score for the code, rated out of a
maximum score of 10.0. This output can be suppressed through the --score=n
option, or its shorthand version -sn.

The evaluation formula can be overridden with the
--evaluation=<python_expression> option.







          

      

      

    

  

    
      
          
            
  
Messages control

pylint has an advanced message control for its checks, offering the ability
to enable / disable a message either from the command line or from the configuration
file, as well as from the code itself.

For all of these controls, pylint accepts the following values:


	a symbolic message: no-member, undefined-variable etc.


	a numerical ID: E1101, E1102 etc.


	The name of the group of checks. You can grab those with pylint --list-groups.
For example, you can disable / enable all the checks related to type checking, with
typecheck or all the checks related to variables with variables


	Corresponding category of the checks


	C convention related checks


	R refactoring related checks


	W various warnings


	E errors, for probable bugs in the code


	F fatal, if an error occurred which prevented pylint from doing further processing.






	All the checks with all





Block disables

This describes how the pragma controls operate at a code level.

The pragma controls can disable / enable:


	All the violations on a single line


a, b = ... # pylint: disable=unbalanced-tuple-unpacking










	All the violations in a single scope


def test():
    # Disable all the no-member violations in this function
    # pylint: disable=no-member
    ...










	All the violations in a block. For instance, each separate branch of an
if statement is considered a separate block, as in the following example:


def meth5(self):
    # pylint: disable=no-member
    # no error
    print(self.bla)
    if self.blop:
        # pylint: enable=no-member
        # disable all no-members for this block
        print(self.blip)
    else:
        # This is affected by the scope disable
        print(self.blip)
    # pylint: enable=no-member
    print(self.blip)
    if self.blop:
        # pylint: enable=no-member
        # disable all no-members for this block
        print(self.blip)
    else:
        # This emits a violation
        print(self.blip)










	If the violation occurs on a block starting line, then it applies only to that line


if self.blop: # pylint: disable=no-member; applies only to this line
    # Here we get an error
    print(self.blip)
else:
    # error
    print(self.blip)












Here's an example with all these rules in a single place:

"""pylint option block-disable"""

__revision__ = None

class Foo(object):
    """block-disable test"""

    def __init__(self):
        pass

    def meth1(self, arg):
        """this issues a message"""
        print(self)

    def meth2(self, arg):
        """and this one not"""
        # pylint: disable=unused-argument
        print(self\
              + "foo")

    def meth3(self):
        """test one line disabling"""
        # no error
        print(self.bla) # pylint: disable=no-member
        # error
        print(self.blop)

    def meth4(self):
        """test re-enabling"""
        # pylint: disable=no-member
        # no error
        print(self.bla)
        print(self.blop)
        # pylint: enable=no-member
        # error
        print(self.blip)

    def meth5(self):
        """test IF sub-block re-enabling"""
        # pylint: disable=no-member
        # no error
        print(self.bla)
        if self.blop:
            # pylint: enable=no-member
            # error
            print(self.blip)
        else:
            # no error
            print(self.blip)
        # no error
        print(self.blip)

    def meth6(self):
        """test TRY/EXCEPT sub-block re-enabling"""
        # pylint: disable=no-member
        # no error
        print(self.bla)
        try:
            # pylint: enable=no-member
            # error
            print(self.blip)
        except UndefinedName: # pylint: disable=undefined-variable
            # no error
            print(self.blip)
        # no error
        print(self.blip)

    def meth7(self):
        """test one line block opening disabling"""
        if self.blop: # pylint: disable=no-member
            # error
            print(self.blip)
        else:
            # error
            print(self.blip)
        # error
        print(self.blip)

    def meth8(self):
        """test late disabling"""
        # error
        print(self.blip)
        # pylint: disable=no-member
        # no error
        print(self.bla)
        print(self.blop)











          

      

      

    

  

    
      
          
            
  
Configuration


Naming Styles


Introduction

Pylint recognizes a number of different name types internally. With a few
exceptions, the type of the name is governed by the location the assignment to a
name is found in, and not the type of object assigned.







	Name Type

	Description





	module

	Module and package names, same as the file names.



	const

	Module-level constants, any variable defined at module level that is not bound to a class object.



	class

	Names in class statements, as well as names bound to class objects at module level.



	function

	Functions, toplevel or nested in functions or methods.



	method

	Methods, functions defined in class bodies. Includes static and class methods.



	attr

	Attributes created on class instances inside methods.



	argument

	Arguments to any function type, including lambdas.



	variable

	Local variables in function scopes.



	class-attribute

	Attributes defined in class bodies.



	inlinevar

	Loop variables in list comprehensions and generator expressions.









Default behavior

By default, Pylint will enforce PEP8 [https://www.python.org/dev/peps/pep-0008]-suggested names.




Predefined Naming Styles

Pylint provides set of predefined naming styles. Those predefined
naming styles may be used to adjust Pylint configuration to coding
style used in linted project.

Following predefined naming styles are available:


	snake_case


	camelCase


	PascalCase


	UPPER_CASE


	any - fake style which does not enforce any limitations




Following options are exposed:


	
--module-naming-style=<style>

	




	
--const-naming-style=<style>

	




	
--class-naming-style=<style>

	




	
--function-naming-style=<style>

	




	
--method-naming-style=<style>

	




	
--attr-naming-style=<style>

	




	
--argument-naming-style=<style>

	




	
--variable-naming-style=<style>

	




	
--class-attribute-naming-style=<style>

	




	
--inlinevar-naming-style=<style>

	






Custom regular expressions

If predefined naming styles are too limited, checker behavior may be further
customized. For each name type, a separate regular expression matching valid
names of this type can be defined. If any of custom regular expressions are
defined, it overrides *-naming-style option value.

Regular expressions for the names are anchored at the beginning, any anchor for
the end must be supplied explicitly. Any name not matching the regular
expression will lead to an instance of invalid-name.


	
--module-rgx=<regex>

	




	
--const-rgx=<regex>

	




	
--class-rgx=<regex>

	




	
--function-rgx=<regex>

	




	
--method-rgx=<regex>

	




	
--attr-rgx=<regex>

	




	
--argument-rgx=<regex>

	




	
--variable-rgx=<regex>

	




	
--class-attribute-rgx=<regex>

	




	
--inlinevar-rgx=<regex>

	



Multiple naming styles for custom regular expressions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^

Large code bases that have been worked on for multiple years often exhibit an
evolution in style as well. In some cases, modules can be in the same package,
but still have different naming style based on the stratum they belong to.
However, intra-module consistency should still be required, to make changes
inside a single file easier. For this case, Pylint supports regular expression
with several named capturing group.

Rather than emitting name warnings immediately, Pylint will determine the
prevalent naming style inside each module and enforce it on all names.

Consider the following (simplified) example:

pylint --function-rgx='(?:(?P<snake>[a-z_]+)|(?P<camel>_?[A-Z]+))$' sample.py





The regular expression defines two naming styles, snake for snake-case
names, and camel for camel-case names.

In sample.py, the function name on line 1 and 7 will mark the module
and enforce the match of named group snake for the remaining names in
the module:

def valid_snake_case(arg):
   ...

def InvalidCamelCase(arg):
   ...

def more_valid_snake_case(arg):
 ...





Because of this, the name on line 4 will trigger an invalid-name warning,
even though the name matches the given regex.

Matches named exempt or ignore can be used for non-tainting names, to
prevent built-in or interface-dictated names to trigger certain naming styles.


	
--name-group=<name1:name2:...,...>

	Default value: empty

Format: comma-separated groups of colon-separated names.

This option can be used to combine name styles. For example, function:method enforces that functions and methods use the same style, and a style triggered by either name type carries over to the other. This requires that the regular expression for the combined name types use the same group names.








Name Hints


	
--include-naming-hint=y|n

	Default: off

Include a hint (regular expression used) for the correct name format with every invalid-name warning.













          

      

      

    

  

    
      
          
            
  
Editor and IDE integration

To use Pylint with:



	Emacs [http://www.gnu.org/software/emacs/], see http://www.emacswiki.org/emacs/PythonProgrammingInEmacs#toc8,


	Vim [http://www.vim.org/], see http://www.vim.org/scripts/script.php?script_id=891,


	Visual Studio [https://www.visualstudio.com/], see https://docs.microsoft.com/visualstudio/python/code-pylint,


	Eclipse [https://www.eclipse.org/] and PyDev [http://pydev.org], see http://pydev.org/manual_adv_pylint.html,


	Komodo [http://www.activestate.com/Products/Komodo/], see http://mateusz.loskot.net/posts/2006/01/15/running-pylint-from-komodo/,


	gedit [https://wiki.gnome.org/Apps/Gedit], see https://launchpad.net/gedit-pylint-2 or https://wiki.gnome.org/Apps/Gedit/PylintPlugin,


	WingIDE [http://www.wingware.com/], see http://www.wingware.com/doc/edit/pylint,


	PyCharm [http://www.jetbrains.com/pycharm/], see the section below,


	TextMate [http://macromates.com], see the section below


	Visual Studio Code [https://code.visualstudio.com/], see https://code.visualstudio.com/docs/python/linting#_pylint,







Pylint is integrated in:



	Visual Studio [https://www.visualstudio.com/], see the Python > Run PyLint command on a project's context menu.


	Eric [http://eric-ide.python-projects.org/] IDE, see the Project > Check menu,


	Spyder [https://www.spyder-ide.org/], see the View -> Panes -> Static code analysis pane and
its corresponding documentation [https://docs.spyder-ide.org/pylint.html].


	pyscripter [http://code.google.com/p/pyscripter/], see the Tool -> Tools menu.


	Visual Studio Code [https://code.visualstudio.com/], see the Preferences -> Settings menu.








Using Pylint thru flymake in Emacs

To enable flymake for Python, insert the following into your .emacs:

;; Configure flymake for Python
(when (load "flymake" t)
  (defun flymake-pylint-init ()
    (let* ((temp-file (flymake-init-create-temp-buffer-copy
                       'flymake-create-temp-inplace))
           (local-file (file-relative-name
                        temp-file
                        (file-name-directory buffer-file-name))))
      (list "epylint" (list local-file))))
  (add-to-list 'flymake-allowed-file-name-masks
               '("\\.py\\'" flymake-pylint-init)))

;; Set as a minor mode for Python
(add-hook 'python-mode-hook '(lambda () (flymake-mode)))





Above stuff is in pylint/elisp/pylint-flymake.el, which should be automatically
installed on Debian systems, in which cases you don't have to put it in your .emacs file.

Other things you may find useful to set:

;; Configure to wait a bit longer after edits before starting
(setq-default flymake-no-changes-timeout '3)

;; Keymaps to navigate to the errors
(add-hook 'python-mode-hook '(lambda () (define-key python-mode-map "\C-cn" 'flymake-goto-next-error)))
(add-hook 'python-mode-hook '(lambda () (define-key python-mode-map "\C-cp" 'flymake-goto-prev-error)))





Finally, by default flymake only displays the extra information about the error when you
hover the mouse over the highlighted line. The following will use the minibuffer to display
messages when you the cursor is on the line.

;; To avoid having to mouse hover for the error message, these functions make flymake error messages
;; appear in the minibuffer
(defun show-fly-err-at-point ()
  "If the cursor is sitting on a flymake error, display the message in the minibuffer"
  (require 'cl)
  (interactive)
  (let ((line-no (line-number-at-pos)))
    (dolist (elem flymake-err-info)
      (if (eq (car elem) line-no)
      (let ((err (car (second elem))))
        (message "%s" (flymake-ler-text err)))))))

(add-hook 'post-command-hook 'show-fly-err-at-point)





Alternative, if you only wish to pollute the minibuffer after an explicit flymake-goto-* then use
the following instead of a post-command-hook

(defadvice flymake-goto-next-error (after display-message activate compile)
  "Display the error in the mini-buffer rather than having to mouse over it"
  (show-fly-err-at-point))

(defadvice flymake-goto-prev-error (after display-message activate compile)
  "Display the error in the mini-buffer rather than having to mouse over it"
  (show-fly-err-at-point))








Integrate Pylint with PyCharm

Install Pylint the usual way:

pip install pylint





Remember the path at which it's installed:

which pylint






Using pylint-pycharm plugin


	In PyCharm go to Preferences > Plugins > Browse repositories...


	Right-click on the plugin named Pylint, select Download and Install and restart PyCharm when prompted




If the plugin is not finding the Pylint executable (e.g. is not inside the PATH environmental variable), you can
specify it manually using the plugin settings:


	Preferences > Other Settings > Pylint or simply click the gear icon from the side bar of the Pylint tool window


	Type the path directly or use the Browse button to open a file selection dialog


	Press the Test button to check if the plugin is able to run the executable




For more info on how to use the plugin please check the official plugin documentation [https://github.com/leinardi/pylint-pycharm/blob/master/README.md].




Using External Tools

Within PyCharm:


	Navigate to the preferences window


	Select "External Tools"


	Click the plus sign at the bottom of the dialog to add a new external task


	In the dialog, populate the following fields:


	Name

	Pylint



	Description

	A Python source code analyzer which looks for programming errors, helps enforcing a coding standard and sniffs for some code smells.



	Synchronize files after execution

	unchecked



	Program

	/path/to/pylint



	Parameters

	$FilePath$







	Click OK




The option to check the current file with Pylint should now be available in Tools > External Tools > Pylint.






Integrate Pylint with TextMate

Install Pylint in the usual way:

pip install pylint





Install the Python bundle for TextMate [https://github.com/textmate/python.tmbundle]:


	select TextMate > Preferences


	select the Bundles tab


	find and tick the Python bundle in the list




You should now see it in Bundles > Python.

In Preferences, select the Variables tab. If a TM_PYCHECKER variable is not already listed, add
it, with the value pylint.

The default keyboard shortcut to run the syntax checker is Control-Shift-V - open a .py file
in Textmate, and try it.

You should see the output in a new window:


PyCheckMate 1.2 – Pylint 1.4.4

No config file found, using default configuration




Then all is well, and most likely Pylint will have expressed some opinions about your Python code
(or will exit with 0 if your code already conforms to its expectations).

If you receive a message:


Please install PyChecker, PyFlakes, Pylint, PEP 8 or flake8 for more extensive code checking.




That means that Pylint wasn't found, which is likely an issue with command paths - TextMate needs
be looking for Pylint on the right paths.

Check where Pylint has been installed, using which:

$ which pylint
/usr/local/bin/pylint





The output will tell you where Pylint can be found; in this case, in /usr/local/bin.


	select TextMate > Preferences


	select the Variables tab


	find and check that a PATH variable exists, and that it contains the appropriate path (if
the path to Pylint were /usr/local/bin/pylint as above, then the variable would need to
contain /usr/local/bin). An actual example in this case might be
$PATH:/opt/local/bin:/usr/local/bin:/usr/texbin, which includes other paths.




... and try running Pylint again.




Integrate Pylint with Visual Studio Code


Command-line arguments and configuration files

See Pylint command line arguments [https://pylint.readthedocs.io/en/latest/user_guide/run.html#command-line-options] for general switches. Command line
arguments can be used to load Pylint plugins, such as that for Django:

"python.linting.pylintArgs": ["--load-plugins", "pylint_django"]





Options can also be specified in a pylintrc or .pylintrc file in
the workspace folder, as described on Pylint command line arguments [https://pylint.readthedocs.io/en/latest/user_guide/run.html#command-line-options].

To control which Pylint messages are shown, add the following contents
to an options file:

[MESSAGES CONTROL]

# Enable the message, report, category or checker with the given id(s). You can
# either give multiple identifier separated by comma (,) or put this option
# multiple time.
#enable=

# Disable the message, report, category or checker with the given id(s). You
# can either give multiple identifier separated by comma (,) or put this option
# multiple time (only on the command line, not in the configuration file where
# it should appear only once).
#disable=








Message category mapping

The Python extension maps Pylint message categories to VS Code
categories through the following settings. If desired, change the
setting to change the mapping.








	Pylint category

	Applicable setting
(python.linting.)

	VS Code category
mapping





	convention

	pylintCategorySeverity.convention

	Information



	refactor

	pylintCategorySeverity.refactor

	Hint



	warning

	pylintCategorySeverity.warning

	Warning



	error

	pylintCategorySeverity.error

	Error



	fatal

	pylintCategorySeverity.fatal

	Error














          

      

      

    

  

    
      
          
            
  
How To Guides



	How to Write a Checker

	How To Write a Pylint Plugin

	Transform plugins









          

      

      

    

  

    
      
          
            
  
How to Write a Checker

You can find some simple examples in the distribution
(custom.py [https://github.com/PyCQA/pylint/blob/master/examples/custom.py]
and
custom_raw.py [https://github.com/PyCQA/pylint/blob/master/examples/custom_raw.py]).

There are three kinds of checkers:


	Raw checkers, which analyse each module as a raw file stream.


	Token checkers, which analyse a file using the list of tokens that
represent the source code in the file.


	AST checkers, which work on an AST representation of the module.




The AST representation is provided by the astroid [https://astroid.readthedocs.io/en/latest/api/general.html#module-astroid] library.
astroid [https://astroid.readthedocs.io/en/latest/api/general.html#module-astroid] adds additional information and methods
over ast [https://docs.python.org/3/library/ast.html#module-ast] in the standard library,
to make tree navigation and code introspection easier.


Writing an AST Checker

Let's implement a checker to make sure that all return nodes in a function
return a unique constant.
Firstly we will need to fill in some required boilerplate:

import astroid

from pylint.checkers import BaseChecker
from pylint.interfaces import IAstroidChecker

class UniqueReturnChecker(BaseChecker):
    __implements__ = IAstroidChecker

    name = 'unique-returns'
    priority = -1
    msgs = {
        'W0001': (
            'Returns a non-unique constant.',
            'non-unique-returns',
            'All constants returned in a function should be unique.'
        ),
    }
    options = (
        (
            'ignore-ints',
            {
                'default': False, 'type': 'yn', 'metavar' : '<y_or_n>',
                'help': 'Allow returning non-unique integers',
            }
        ),
    )





So far we have defined the following required components of our checker:


	
	A name. The name is used to generate a special configuration

	section for the checker, when options have been provided.







	
	A priority. This must be to be lower than 0. The checkers are ordered by

	the priority when run, from the most negative to the most positive.







	
	A message dictionary. Each checker is being used for finding problems

	in your code, the problems being displayed to the user through messages.
The message dictionary should specify what messages the checker is
going to emit. It has the following format:

msgs = {
    'message-id': (
        'displayed-message', 'message-symbol', 'message-help'
    )
}






	The message-id should be a 5-digit number,
prefixed with a message category.
There are multiple message categories,
these being C, W, E, F, R,
standing for Convention, Warning, Error, Fatal and Refactoring.
The rest of the 5 digits should not conflict with existing checkers
and they should be consistent across the checker.
For instance,
the first two digits should not be different across the checker.


	The displayed-message is used for displaying the message to the user,
once it is emitted.


	The message-symbol is an alias of the message id
and it can be used wherever the message id can be used.


	The message-help is used when calling pylint --help-msg.












We have also defined an optional component of the checker.
The options list defines any user configurable options.
It has the following format:

options = (
    'option-symbol': {'argparse-like-kwarg': 'value'},
)






	The option-symbol is a unique name for the option.
This is used on the command line and in config files.
The hyphen is replaced by an underscore when used in the checker,
similarly to how you would use  argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace].




Next we'll track when we enter and leave a function.

def __init__(self, linter=None):
    super(UniqueReturnChecker, self).__init__(linter)
    self._function_stack = []

def visit_functiondef(self, node):
    self._function_stack.append([])

def leave_functiondef(self, node):
    self._function_stack.pop()





In the constructor we initialise a stack to keep a list of return nodes
for each function.
An AST checker is a visitor, and should implement
visit_<lowered class name> or leave_<lowered class name>
methods for the nodes it's interested in.
In this case we have implemented visit_functiondef and leave_functiondef
to add a new list of return nodes for this function,
and to remove the list of return nodes when we leave the function.

Finally we'll implement the check.
We will define a visit_return function,
which is called with a astroid.node_classes.Return node.

We'll need to be able to figure out what attributes a
astroid.node_classes.Return node has available.
We can use astroid.extract_node() for this:

>>> node = astroid.extract_node("return 5")
>>> node
<Return l.1 at 0x7efe62196390>
>>> help(node)
>>> node.value
<Const.int l.1 at 0x7efe62196ef0>





We could also construct a more complete example:

>>> node_a, node_b = astroid.extract_node("""
... def test():
...     if True:
...         return 5 #@
...     return 5 #@
""")
>>> node_a.value
<Const.int l.4 at 0x7efe621a74e0>
>>> node_a.value.value
5
>>> node_a.value.value == node_b.value.value
True





For astroid.extract_node(), you can use #@ at the end of a line to choose which statements will be extracted into nodes.

For more information on astroid.extract_node(),
see the astroid documentation [http://astroid.readthedocs.io/en/latest/].

Now we know how to use the astroid node, we can implement our check.

def visit_return(self, node):
    if not isinstance(node.value, astroid.node_classes.Const):
        return

    for other_return in self._function_stack[-1]:
       if (node.value.value == other_return.value.value and
           not (self.config.ignore_ints and node.value.pytype() == int)):
           self.add_message(
               'non-unique-returns', node=node,
           )

    self._function_stack[-1].append(node)





Once we have established that the source code has failed our check,
we use add_message() to emit our failure message.

Finally, we need to register the checker with pylint.
Add the register function to the top level of the file.

def register(linter):
    linter.register_checker(UniqueReturnChecker(linter))





We are now ready to debug and test our checker!




Debugging a Checker

It is very simple to get to a point where we can use pdb [https://docs.python.org/3/library/pdb.html#module-pdb].
We'll need a small test case.
Put the following into a Python file:

def test():
    if True:
        return 5
    return 5

def test2():
    if True:
        return 1
    return 5





After inserting pdb into our checker and installing it,
we can run pylint with only our checker:

$ pylint --load-plugins=my_plugin --disable=all --enable=non-unique-returns test.py
(Pdb)





Now we can debug our checker!


Note

my_plugin refers to a module called my_plugin.py.
This module can be made available to pylint by putting this
module's parent directory in your PYTHONPATH
environment variable or by adding the my_plugin.py
file to the pylint/checkers directory if running from source.






Testing a Checker

Pylint is very well suited to test driven development.
You can implement the template of the checker,
produce all of your test cases and check that they fail,
implement the checker,
then check that all of your test cases work.

Pylint provides a pylint.testutils.CheckerTestCase
to make test cases very simple.
We can use the example code that we used for debugging as our test cases.

import my_plugin
import pylint.testutils

class TestUniqueReturnChecker(pylint.testutils.CheckerTestCase):
    CHECKER_CLASS = my_plugin.UniqueReturnChecker

    def test_finds_non_unique_ints(self):
        func_node, return_node_a, return_node_b = astroid.extract_node("""
        def test(): #@
            if True:
                return 5 #@
            return 5 #@
        """)

        self.checker.visit_functiondef(func_node)
        self.checker.visit_return(return_node_a)
        with self.assertAddsMessages(
            pylint.testutils.Message(
                msg_id='non-unique-returns',
                node=return_node_b,
            ),
        ):
            self.checker.visit_return(return_node_b)

    def test_ignores_unique_ints(self):
        func_node, return_node_a, return_node_b = astroid.extract_node("""
        def test(): #@
            if True:
                return 1 #@
            return 5 #@
        """)

        with self.assertNoMessages():
            self.checker.visit_functiondef(func_node)
            self.checker.visit_return(return_node_a)
            self.checker.visit_return(return_node_b)





Once again we are using astroid.extract_node() to
construct our test cases.
pylint.testutils.CheckerTestCase has created the linter and checker for us,
we simply simulate a traversal of the AST tree
using the nodes that we are interested in.







          

      

      

    

  

    
      
          
            
  
How To Write a Pylint Plugin

Pylint provides support for writing two types of extensions.
First, there is the concept of checkers,
which can be used for finding problems in your code.
Secondly, there is also the concept of transform plugin,
which represents a way through which the inference and
the capabilities of Pylint can be enhanced
and tailored to a particular module, library of framework.

In general, a plugin is a module which should have a function register,
which takes an instance of pylint.lint.PyLinter as input.

A plugin can optionally define also function load_configuration,
which takes an instance of pylint.lint.PyLinter as input. This
function is called after Pylint loads configuration from configuration
file and command line interface. This function should load additional
plugin specific configuration to Pylint.

So a basic hello-world plugin can be implemented as:

# Inside hello_plugin.py
def register(linter):
  print 'Hello world'





We can run this plugin by placing this module in the PYTHONPATH and invoking
pylint as:

$ pylint -E --load-plugins hello_plugin foo.py
Hello world





We can extend hello-world plugin to ignore some specific names using
load_configuration function:

# Inside hello_plugin.py
def register(linter):
  print 'Hello world'

def load_configuration(linter):

  name_checker = get_checker(linter, NameChecker)
  # We consider as good names of variables Hello and World
  name_checker.config.good_names += ('Hello', 'World')

  # We ignore bin directory
  linter.config.black_list += ('bin',)





Depending if we need a transform plugin or a checker, this might not
be enough. For the former, this is enough to declare the module as a plugin,
but in the case of the latter, we need to register our checker with the linter
object, by calling the following inside the register function:

linter.register_checker(OurChecker(linter))





For more information on writing a checker see How to Write a Checker.





          

      

      

    

  

    
      
          
            
  
Transform plugins


Why write a plugin?

Pylint is a static analysis tool and Python is a dynamically typed language.
So there will be cases where Pylint cannot analyze files properly (this problem
can happen in statically typed languages also if reflection or dynamic
evaluation is used).

The plugins are a way to tell Pylint how to handle such cases,
since only the user would know what needs to be done. They are usually operating
on the AST level, by modifying or changing it in a way which can ease its
understanding by Pylint.




Example

Let us run Pylint on a module from the Python source: warnings.py [http://hg.python.org/cpython/file/2.7/Lib/warnings.py] and see what happens:

amitdev$ pylint -E Lib/warnings.py
E:297,36: Instance of 'WarningMessage' has no 'message' member (no-member)
E:298,36: Instance of 'WarningMessage' has no 'filename' member (no-member)
E:298,51: Instance of 'WarningMessage' has no 'lineno' member (no-member)
E:298,64: Instance of 'WarningMessage' has no 'line' member (no-member)





Did we catch a genuine error? Let's open the code and look at WarningMessage class:

class WarningMessage(object):

  """Holds the result of a single showwarning() call."""

  _WARNING_DETAILS = ("message", "category", "filename", "lineno", "file",
                      "line")

  def __init__(self, message, category, filename, lineno, file=None,
                  line=None):
    local_values = locals()
    for attr in self._WARNING_DETAILS:
      setattr(self, attr, local_values[attr])
    self._category_name = category.__name__ if category else None

  def __str__(self):
    ...





Ah, the fields (message, category etc) are not defined statically on the class.
Instead they are added using setattr. Pylint would have a tough time figuring
this out.




Enter Plugin

We can write a transform plugin to tell Pylint how to analyze this properly.

One way to fix our example with a plugin would be to transform the WarningMessage class,
by setting the attributes so that Pylint can see them. This can be done by
registering a transform function. We can transform any node in the parsed AST like
Module, Class, Function etc. In our case we need to transform a class. It can be done so:

import astroid
from astroid import MANAGER

def register(linter):
  # Needed for registering the plugin.
  pass

def transform(cls):
  if cls.name == 'WarningMessage':
    import warnings
    for f in warnings.WarningMessage._WARNING_DETAILS:
      cls.locals[f] = [astroid.ClassDef(f, None)]

MANAGER.register_transform(astroid.ClassDef, transform)





Let's go through the plugin. First, we need to register a class transform, which
is done via the register_transform function in MANAGER. It takes the node
type and function as parameters. We need to change a class, so we use astroid.ClassDef.
We also pass a transform function which does the actual transformation.

transform function is simple as well. If the class is WarningMessage then we
add the attributes to its locals (we are not bothered about type of attributes, so setting
them as class will do. But we could set them to any type we want). That's it.

Note: We don't need to do anything in the register function of the plugin since we
are not modifying anything in the linter itself.

Lets run Pylint with this plugin and see:

amitdev$ pylint -E --load-plugins warning_plugin Lib/warnings.py
amitdev$





All the false positives associated with WarningMessage are now gone. This is just
an example, any code transformation can be done by plugins.

See astroid/brain [https://github.com/PyCQA/astroid/tree/master/astroid/brain] for real life examples of transform plugins.







          

      

      

    

  

    
      
          
            
  
Technical Reference



	Startup and the Linter Class

	Checkers

	Optional Pylint checkers in the extensions module

	Pylint features

	Pylint and C extensions









          

      

      

    

  

    
      
          
            
  
Startup and the Linter Class

The two main classes in pylint.lint are
pylint.lint.Run and pylint.lint.PyLinter.

The pylint.lint.Run object is responsible for starting up pylint.
It does some basic checking of the given command line options to
find the initial hook to run,
find the config file to use,
and find which plugins have been specified.
It can then create the master pylint.lint.PyLinter instance
and initialise it with the config file and plugins that were discovered
when preprocessing the command line options.
Finally the pylint.lint.Run object launches any child linters
for parallel jobs, and starts the linting process.

The pylint.lint.PyLinter is responsible for coordinating the
linting process.
It parses the configuration and provides it for the checkers and other plugins,
it handles the messages emitted by the checkers,
it handles the output reporting,
and it launches the checkers.





          

      

      

    

  

    
      
          
            
  
Checkers

All of the default pylint checkers exist in pylint.checkers.
This is where most of pylint's brains exist.
Most checkers are AST based and so use astroid [https://astroid.readthedocs.io/en/latest/api/general.html#module-astroid].
pylint.checkers.utils provides a large number of utility methods for
dealing with astroid [https://astroid.readthedocs.io/en/latest/api/general.html#module-astroid].





          

      

      

    

  

    
      
          
            
  
Optional Pylint checkers in the extensions module

Pylint provides the following optional plugins:


	Deprecated Builtins checker


	Else If Used checker


	Compare-To-Zero checker


	Parameter Documentation checker


	Docstyle checker


	Compare-To-Empty-String checker


	Design checker


	Overlap-Except checker


	Multiple Types checker




You can activate any or all of these extensions by adding a load-plugins line to the MASTER section of your .pylintrc, for example:

load-plugins=pylint.extensions.docparams,pylint.extensions.docstyle






Deprecated Builtins checker

This checker is provided by pylint.extensions.bad_builtin.
Verbatim name of the checker is deprecated_builtins.


Deprecated Builtins checker Documentation

This used to be the bad-builtin core checker, but it was moved to
an extension instead. It can be used for finding prohibited used builtins,
such as map or filter, for which other alternatives exists.

If you want to control for what builtins the checker should warn about,
you can use the bad-functions option:

$ pylint a.py --load-plugins=pylint.extensions.bad_builtin --bad-functions=apply,reduce
...








Deprecated Builtins checker Options


	bad-functions

	List of builtins function names that should not be used, separated by a comma

Default: map,filter








Deprecated Builtins checker Messages


	bad-builtin (W0141)

	Used builtin function %s
Used when a black listed builtin function is used (see the bad-function
option). Usual black listed functions are the ones like map, or filter , where
Python offers now some cleaner alternative like list comprehension.










Else If Used checker

This checker is provided by pylint.extensions.check_elif.
Verbatim name of the checker is else_if_used.


Else If Used checker Messages


	else-if-used (R5501)

	Consider using "elif" instead of "else if"
Used when an else statement is immediately followed by an if statement and
does not contain statements that would be unrelated to it.










Compare-To-Zero checker

This checker is provided by pylint.extensions.comparetozero.
Verbatim name of the checker is compare-to-zero.


Compare-To-Zero checker Messages


	compare-to-zero (C2001)

	Avoid comparisons to zero
Used when Pylint detects comparison to a 0 constant.










Parameter Documentation checker

This checker is provided by pylint.extensions.docparams.
Verbatim name of the checker is parameter_documentation.


Parameter Documentation checker Documentation

If you document the parameters of your functions, methods and constructors and
their types systematically in your code this optional component might
be useful for you. Sphinx style, Google style, and Numpy style are supported.
(For some examples, see https://pypi.python.org/pypi/sphinxcontrib-napoleon .)

You can activate this checker by adding the line:

load-plugins=pylint.extensions.docparams





to the MASTER section of your .pylintrc.

This checker verifies that all function, method, and constructor docstrings
include documentation of the


	parameters and their types


	return value and its type


	exceptions raised




and can handle docstrings in


	Sphinx style (param, type, return, rtype,
raise / except):

def function_foo(x, y, z):
    '''function foo ...

    :param x: bla x
    :type x: int

    :param y: bla y
    :type y: float

    :param int z: bla z

    :return: sum
    :rtype: float

    :raises OSError: bla
    '''
    return x + y + z







	or the Google style (Args:, Returns:, Raises:):

def function_foo(x, y, z):
    '''function foo ...

    Args:
        x (int): bla x
        y (float): bla y

        z (int): bla z

    Returns:
        float: sum

    Raises:
        OSError: bla
    '''
    return x + y + z







	or the Numpy style (Parameters, Returns, Raises):

def function_foo(x, y, z):
    '''function foo ...

    Parameters
    ----------
    x: int
        bla x
    y: float
        bla y

    z: int
        bla z

    Returns
    -------
    float
        sum

    Raises
    ------
    OSError
        bla
    '''
    return x + y + z









You'll be notified of missing parameter documentation but also of
naming inconsistencies between the signature and the documentation which
often arise when parameters are renamed automatically in the code, but not in
the documentation.

Constructor parameters can be documented in either the class docstring or
the __init__ docstring, but not both:

class ClassFoo(object):
    '''Sphinx style docstring foo

    :param float x: bla x

    :param y: bla y
    :type y: int
    '''
    def __init__(self, x, y):
        pass

class ClassBar(object):
    def __init__(self, x, y):
        '''Google style docstring bar

        Args:
            x (float): bla x
            y (int): bla y
        '''
        pass





In some cases, having to document all parameters is a nuisance, for instance if
many of your functions or methods just follow a common interface. To remove
this burden, the checker accepts missing parameter documentation if one of the
following phrases is found in the docstring:


	For the other parameters, see


	For the parameters, see




(with arbitrary whitespace between the words). Please add a link to the
docstring defining the interface, e.g. a superclass method, after "see":

def callback(x, y, z):
    '''Sphinx style docstring for callback ...

    :param x: bla x
    :type x: int

    For the other parameters, see
    :class:`MyFrameworkUsingAndDefiningCallback`
    '''
    return x + y + z

def callback(x, y, z):
    '''Google style docstring for callback ...

    Args:
        x (int): bla x

    For the other parameters, see
    :class:`MyFrameworkUsingAndDefiningCallback`
    '''
    return x + y + z





Naming inconsistencies in existing parameter and their type documentations are
still detected.




Parameter Documentation checker Options


	accept-no-param-doc

	Whether to accept totally missing parameter documentation in the docstring of
a function that has parameters.

Default: yes



	accept-no-raise-doc

	Whether to accept totally missing raises documentation in the docstring of a
function that raises an exception.

Default: yes



	accept-no-return-doc

	Whether to accept totally missing return documentation in the docstring of a
function that returns a statement.

Default: yes



	accept-no-yields-doc

	Whether to accept totally missing yields documentation in the docstring of a
generator.

Default: yes



	default-docstring-type

	If the docstring type cannot be guessed the specified docstring type will be
used.

Default: default








Parameter Documentation checker Messages


	differing-param-doc (W9017)

	"%s" differing in parameter documentation
Please check parameter names in declarations.



	differing-type-doc (W9018)

	"%s" differing in parameter type documentation
Please check parameter names in type declarations.



	multiple-constructor-doc (W9005)

	"%s" has constructor parameters documented in class and __init__
Please remove parameter declarations in the class or constructor.



	missing-param-doc (W9015)

	"%s" missing in parameter documentation
Please add parameter declarations for all parameters.



	missing-type-doc (W9016)

	"%s" missing in parameter type documentation
Please add parameter type declarations for all parameters.



	missing-raises-doc (W9006)

	"%s" not documented as being raised
Please document exceptions for all raised exception types.



	missing-return-doc (W9011)

	Missing return documentation
Please add documentation about what this method returns.



	missing-return-type-doc (W9012)

	Missing return type documentation
Please document the type returned by this method.



	missing-yield-doc (W9013)

	Missing yield documentation
Please add documentation about what this generator yields.



	missing-yield-type-doc (W9014)

	Missing yield type documentation
Please document the type yielded by this method.



	redundant-returns-doc (W9008)

	Redundant returns documentation
Please remove the return/rtype documentation from this method.



	redundant-yields-doc (W9010)

	Redundant yields documentation
Please remove the yields documentation from this method.










Docstyle checker

This checker is provided by pylint.extensions.docstyle.
Verbatim name of the checker is docstyle.


Docstyle checker Messages


	bad-docstring-quotes (C0198)

	Bad docstring quotes in %s, expected """, given %s
Used when a docstring does not have triple double quotes.



	docstring-first-line-empty (C0199)

	First line empty in %s docstring
Used when a blank line is found at the beginning of a docstring.










Compare-To-Empty-String checker

This checker is provided by pylint.extensions.emptystring.
Verbatim name of the checker is compare-to-empty-string.


Compare-To-Empty-String checker Messages


	compare-to-empty-string (C1901)

	Avoid comparisons to empty string
Used when Pylint detects comparison to an empty string constant.










Design checker

This checker is provided by pylint.extensions.mccabe.
Verbatim name of the checker is design.


Design checker Documentation

You can now use this plugin for finding complexity issues in your code base.

Activate it through pylint --load-plugins=pylint.extensions.mccabe. It introduces
a new warning, too-complex, which is emitted when a code block has a complexity
higher than a preestablished value, which can be controlled through the
max-complexity option, such as in this example:

$ cat a.py
def f10():
    """McCabe rating: 11"""
    myint = 2
    if myint == 5:
        return myint
    elif myint == 6:
        return myint
    elif myint == 7:
        return myint
    elif myint == 8:
        return myint
    elif myint == 9:
        return myint
    elif myint == 10:
        if myint == 8:
            while True:
                return True
        elif myint == 8:
            with myint:
                return 8
    else:
        if myint == 2:
            return myint
        return myint
    return myint
$ pylint a.py --load-plugins=pylint.extensions.mccabe
R:1: 'f10' is too complex. The McCabe rating is 11 (too-complex)
$ pylint a.py --load-plugins=pylint.extensions.mccabe --max-complexity=50
$








Design checker Options


	max-complexity

	McCabe complexity cyclomatic threshold

Default: 10








Design checker Messages


	too-complex (R1260)

	%s is too complex. The McCabe rating is %d
Used when a method or function is too complex based on McCabe Complexity
Cyclomatic










Overlap-Except checker

This checker is provided by pylint.extensions.overlapping_exceptions.
Verbatim name of the checker is overlap-except.


Overlap-Except checker Messages


	overlapping-except (W0714)

	Overlapping exceptions (%s)
Used when exceptions in handler overlap or are identical










Multiple Types checker

This checker is provided by pylint.extensions.redefined_variable_type.
Verbatim name of the checker is multiple_types.


Multiple Types checker Messages


	redefined-variable-type (R0204)

	Redefinition of %s type from %s to %s
Used when the type of a variable changes inside a method or a function.













          

      

      

    

  

    
      
          
            
  
Pylint features


Pylint global options and switches

Pylint provides global options and switches.


General options


	ignore

	Add files or directories to the blacklist. They should be base names, not
paths.

Default: CVS



	ignore-patterns

	Add files or directories matching the regex patterns to the blacklist. The
regex matches against base names, not paths.



	persistent

	Pickle collected data for later comparisons.

Default: yes



	load-plugins

	List of plugins (as comma separated values of python modules names) to load,
usually to register additional checkers.



	jobs

	Use multiple processes to speed up Pylint. Specifying 0 will auto-detect the
number of processors available to use.

Default: 1



	unsafe-load-any-extension

	Allow loading of arbitrary C extensions. Extensions are imported into the
active Python interpreter and may run arbitrary code.



	limit-inference-results

	Control the amount of potential inferred values when inferring a single
object. This can help the performance when dealing with large functions or
complex, nested conditions.

Default: 100



	extension-pkg-whitelist

	A comma-separated list of package or module names from where C extensions may
be loaded. Extensions are loading into the active Python interpreter and may
run arbitrary code.



	suggestion-mode

	When enabled, pylint would attempt to guess common misconfiguration and emit
user-friendly hints instead of false-positive error messages.

Default: yes



	exit-zero

	Always return a 0 (non-error) status code, even if lint errors are found.
This is primarily useful in continuous integration scripts.








Messages control options


	confidence

	Only show warnings with the listed confidence levels. Leave empty to show
all. Valid levels: HIGH, INFERENCE, INFERENCE_FAILURE, UNDEFINED.



	enable

	Enable the message, report, category or checker with the given id(s). You can
either give multiple identifier separated by comma (,) or put this option
multiple time (only on the command line, not in the configuration file where
it should appear only once). See also the "--disable" option for examples.



	disable

	Disable the message, report, category or checker with the given id(s). You
can either give multiple identifiers separated by comma (,) or put this
option multiple times (only on the command line, not in the configuration
file where it should appear only once). You can also use "--disable=all" to
disable everything first and then reenable specific checks. For example, if
you want to run only the similarities checker, you can use "--disable=all
--enable=similarities". If you want to run only the classes checker, but have
no Warning level messages displayed, use "--disable=all --enable=classes
--disable=W".

Default: print-statement,parameter-unpacking,unpacking-in-except,old-raise-syntax,backtick,long-suffix,old-ne-operator,old-octal-literal,import-star-module-level,non-ascii-bytes-literal,apply-builtin,basestring-builtin,buffer-builtin,cmp-builtin,coerce-builtin,execfile-builtin,file-builtin,long-builtin,raw_input-builtin,reduce-builtin,standarderror-builtin,unicode-builtin,xrange-builtin,coerce-method,delslice-method,getslice-method,setslice-method,no-absolute-import,old-division,dict-iter-method,dict-view-method,next-method-called,metaclass-assignment,indexing-exception,raising-string,reload-builtin,oct-method,hex-method,nonzero-method,cmp-method,input-builtin,round-builtin,intern-builtin,unichr-builtin,map-builtin-not-iterating,zip-builtin-not-iterating,range-builtin-not-iterating,filter-builtin-not-iterating,using-cmp-argument,eq-without-hash,div-method,idiv-method,rdiv-method,exception-message-attribute,invalid-str-codec,sys-max-int,bad-python3-import,deprecated-string-function,deprecated-str-translate-call,deprecated-itertools-function,deprecated-types-field,next-method-defined,dict-items-not-iterating,dict-keys-not-iterating,dict-values-not-iterating,deprecated-operator-function,deprecated-urllib-function,xreadlines-attribute,deprecated-sys-function,exception-escape,comprehension-escape








Reports options


	output-format

	Set the output format. Available formats are text, parseable, colorized, json
and msvs (visual studio). You can also give a reporter class, e.g.
mypackage.mymodule.MyReporterClass.

Default: text



	reports

	Tells whether to display a full report or only the messages.



	evaluation

	Python expression which should return a note less than 10 (10 is the highest
note). You have access to the variables errors warning, statement which
respectively contain the number of errors / warnings messages and the total
number of statements analyzed. This is used by the global evaluation report
(RP0004).

Default: 10.0 - ((float(5 * error + warning + refactor + convention) / statement) * 10)



	score

	Activate the evaluation score.

Default: yes



	msg-template

	Template used to display messages. This is a python new-style format string
used to format the message information. See doc for all details.










Pylint checkers' options and switches

Pylint checkers can provide three set of features:


	options that control their execution,


	messages that they can raise,


	reports that they can generate.




Below is a list of all checkers and their features.


Async checker

Verbatim name of the checker is async.


Async checker Messages


	not-async-context-manager (E1701)

	Async context manager '%s' doesn't implement __aenter__ and __aexit__.
Used when an async context manager is used with an object that does not
implement the async context management protocol. This message can't be emitted
when using Python < 3.5.



	yield-inside-async-function (E1700)

	Yield inside async function
Used when an yield or yield from statement is found inside an async
function. This message can't be emitted when using Python < 3.5.










Basic checker

Verbatim name of the checker is basic.


Basic checker Options


	good-names

	Good variable names which should always be accepted, separated by a comma.

Default: i,j,k,ex,Run,_



	bad-names

	Bad variable names which should always be refused, separated by a comma.

Default: foo,bar,baz,toto,tutu,tata



	name-group

	Colon-delimited sets of names that determine each other's naming style when
the name regexes allow several styles.



	include-naming-hint

	Include a hint for the correct naming format with invalid-name.



	property-classes

	List of decorators that produce properties, such as abc.abstractproperty. Add
to this list to register other decorators that produce valid properties.
These decorators are taken in consideration only for invalid-name.

Default: abc.abstractproperty



	argument-naming-style

	Naming style matching correct argument names.

Default: snake_case



	argument-rgx

	Regular expression matching correct argument names. Overrides argument-
naming-style.



	attr-naming-style

	Naming style matching correct attribute names.

Default: snake_case



	attr-rgx

	Regular expression matching correct attribute names. Overrides attr-naming-
style.



	class-naming-style

	Naming style matching correct class names.

Default: PascalCase



	class-rgx

	Regular expression matching correct class names. Overrides class-naming-
style.



	class-attribute-naming-style

	Naming style matching correct class attribute names.

Default: any



	class-attribute-rgx

	Regular expression matching correct class attribute names. Overrides class-
attribute-naming-style.



	const-naming-style

	Naming style matching correct constant names.

Default: UPPER_CASE



	const-rgx

	Regular expression matching correct constant names. Overrides const-naming-
style.



	function-naming-style

	Naming style matching correct function names.

Default: snake_case



	function-rgx

	Regular expression matching correct function names. Overrides function-
naming-style.



	inlinevar-naming-style

	Naming style matching correct inline iteration names.

Default: any



	inlinevar-rgx

	Regular expression matching correct inline iteration names. Overrides
inlinevar-naming-style.



	method-naming-style

	Naming style matching correct method names.

Default: snake_case



	method-rgx

	Regular expression matching correct method names. Overrides method-naming-
style.



	module-naming-style

	Naming style matching correct module names.

Default: snake_case



	module-rgx

	Regular expression matching correct module names. Overrides module-naming-
style.



	variable-naming-style

	Naming style matching correct variable names.

Default: snake_case



	variable-rgx

	Regular expression matching correct variable names. Overrides variable-
naming-style.



	no-docstring-rgx

	Regular expression which should only match function or class names that do
not require a docstring.

Default: ^_



	docstring-min-length

	Minimum line length for functions/classes that require docstrings, shorter
ones are exempt.

Default: -1








Basic checker Messages


	not-in-loop (E0103)

	%r not properly in loop
Used when break or continue keywords are used outside a loop.



	function-redefined (E0102)

	%s already defined line %s
Used when a function / class / method is redefined.



	continue-in-finally (E0116)

	'continue' not supported inside 'finally' clause
Emitted when the continue keyword is found inside a finally clause, which is
a SyntaxError.



	abstract-class-instantiated (E0110)

	Abstract class %r with abstract methods instantiated
Used when an abstract class with abc.ABCMeta as metaclass has abstract
methods and is instantiated.



	star-needs-assignment-target (E0114)

	Can use starred expression only in assignment target
Emitted when a star expression is not used in an assignment target.



	duplicate-argument-name (E0108)

	Duplicate argument name %s in function definition
Duplicate argument names in function definitions are syntax errors.



	return-in-init (E0101)

	Explicit return in __init__
Used when the special class method __init__ has an explicit return value.



	too-many-star-expressions (E0112)

	More than one starred expression in assignment
Emitted when there are more than one starred expressions (*x) in an
assignment. This is a SyntaxError.



	nonlocal-and-global (E0115)

	Name %r is nonlocal and global
Emitted when a name is both nonlocal and global.



	used-prior-global-declaration (E0118)

	Name %r is used prior to global declaration
Emitted when a name is used prior a global declaration, which results in an
error since Python 3.6. This message can't be emitted when using Python < 3.6.



	return-outside-function (E0104)

	Return outside function
Used when a "return" statement is found outside a function or method.



	return-arg-in-generator (E0106)

	Return with argument inside generator
Used when a "return" statement with an argument is found outside in a
generator function or method (e.g. with some "yield" statements). This message
can't be emitted when using Python >= 3.3.



	invalid-star-assignment-target (E0113)

	Starred assignment target must be in a list or tuple
Emitted when a star expression is used as a starred assignment target.



	bad-reversed-sequence (E0111)

	The first reversed() argument is not a sequence
Used when the first argument to reversed() builtin isn't a sequence (does not
implement __reversed__, nor __getitem__ and __len__



	nonexistent-operator (E0107)

	Use of the non-existent %s operator
Used when you attempt to use the C-style pre-increment or pre-decrement
operator -- and ++, which doesn't exist in Python.



	yield-outside-function (E0105)

	Yield outside function
Used when a "yield" statement is found outside a function or method.



	init-is-generator (E0100)

	__init__ method is a generator
Used when the special class method __init__ is turned into a generator by a
yield in its body.



	misplaced-format-function (E0119)

	format function is not called on str
Emitted when format function is not called on str object. e.g doing
print("value: {}").format(123) instead of print("value: {}".format(123)). This
might not be what the user intended to do.



	nonlocal-without-binding (E0117)

	nonlocal name %s found without binding
Emitted when a nonlocal variable does not have an attached name somewhere in
the parent scopes



	lost-exception (W0150)

	%s statement in finally block may swallow exception
Used when a break or a return statement is found inside the finally clause of
a try...finally block: the exceptions raised in the try clause will be
silently swallowed instead of being re-raised.



	assert-on-tuple (W0199)

	Assert called on a 2-uple. Did you mean 'assert x,y'?
A call of assert on a tuple will always evaluate to true if the tuple is not
empty, and will always evaluate to false if it is.



	comparison-with-callable (W0143)

	Comparing against a callable, did you omit the parenthesis?
This message is emitted when pylint detects that a comparison with a callable
was made, which might suggest that some parenthesis were omitted, resulting in
potential unwanted behaviour.



	dangerous-default-value (W0102)

	Dangerous default value %s as argument
Used when a mutable value as list or dictionary is detected in a default value
for an argument.



	duplicate-key (W0109)

	Duplicate key %r in dictionary
Used when a dictionary expression binds the same key multiple times.



	useless-else-on-loop (W0120)

	Else clause on loop without a break statement
Loops should only have an else clause if they can exit early with a break
statement, otherwise the statements under else should be on the same scope as
the loop itself.



	expression-not-assigned (W0106)

	Expression "%s" is assigned to nothing
Used when an expression that is not a function call is assigned to nothing.
Probably something else was intended.



	confusing-with-statement (W0124)

	Following "as" with another context manager looks like a tuple.
Emitted when a with statement component returns multiple values and uses
name binding with as only for a part of those values, as in with ctx() as a,
b. This can be misleading, since it's not clear if the context manager returns
a tuple or if the node without a name binding is another context manager.



	unnecessary-lambda (W0108)

	Lambda may not be necessary
Used when the body of a lambda expression is a function call on the same
argument list as the lambda itself; such lambda expressions are in all but a
few cases replaceable with the function being called in the body of the
lambda.



	assign-to-new-keyword (W0111)

	Name %s will become a keyword in Python %s
Used when assignment will become invalid in future Python release due to
introducing new keyword.



	pointless-statement (W0104)

	Statement seems to have no effect
Used when a statement doesn't have (or at least seems to) any effect.



	pointless-string-statement (W0105)

	String statement has no effect
Used when a string is used as a statement (which of course has no effect).
This is a particular case of W0104 with its own message so you can easily
disable it if you're using those strings as documentation, instead of
comments.



	unnecessary-pass (W0107)

	Unnecessary pass statement
Used when a "pass" statement that can be avoided is encountered.



	unreachable (W0101)

	Unreachable code
Used when there is some code behind a "return" or "raise" statement, which
will never be accessed.



	eval-used (W0123)

	Use of eval
Used when you use the "eval" function, to discourage its usage. Consider using
ast.literal_eval for safely evaluating strings containing Python expressions
from untrusted sources.



	exec-used (W0122)

	Use of exec
Used when you use the "exec" statement (function for Python 3), to discourage
its usage. That doesn't mean you cannot use it !



	using-constant-test (W0125)

	Using a conditional statement with a constant value
Emitted when a conditional statement (If or ternary if) uses a constant value
for its test. This might not be what the user intended to do.



	literal-comparison (R0123)

	Comparison to literal
Used when comparing an object to a literal, which is usually what you do not
want to do, since you can compare to a different literal than what was
expected altogether.



	comparison-with-itself (R0124)

	Redundant comparison - %s
Used when something is compared against itself.



	invalid-name (C0103)

	%s name "%s" doesn't conform to %s
Used when the name doesn't conform to naming rules associated to its type
(constant, variable, class...).



	blacklisted-name (C0102)

	Black listed name "%s"
Used when the name is listed in the black list (unauthorized names).



	misplaced-comparison-constant (C0122)

	Comparison should be %s
Used when the constant is placed on the left side of a comparison. It is
usually clearer in intent to place it in the right hand side of the
comparison.



	singleton-comparison (C0121)

	Comparison to %s should be %s
Used when an expression is compared to singleton values like True, False or
None.



	empty-docstring (C0112)

	Empty %s docstring
Used when a module, function, class or method has an empty docstring (it would
be too easy ;).



	missing-docstring (C0111)

	Missing %s docstring
Used when a module, function, class or method has no docstring.Some special
methods like __init__ doesn't necessary require a docstring.



	unidiomatic-typecheck (C0123)

	Using type() instead of isinstance() for a typecheck.
The idiomatic way to perform an explicit typecheck in Python is to use
isinstance(x, Y) rather than type(x) == Y, type(x) is Y. Though there are
unusual situations where these give different results.








Basic checker Reports


	RP0101

	Statistics by type










Classes checker

Verbatim name of the checker is classes.


Classes checker Options


	defining-attr-methods

	List of method names used to declare (i.e. assign) instance attributes.

Default: __init__,__new__,setUp



	valid-classmethod-first-arg

	List of valid names for the first argument in a class method.

Default: cls



	valid-metaclass-classmethod-first-arg

	List of valid names for the first argument in a metaclass class method.

Default: cls



	exclude-protected

	List of member names, which should be excluded from the protected access
warning.

Default: _asdict,_fields,_replace,_source,_make








Classes checker Messages


	access-member-before-definition (E0203)

	Access to member %r before its definition line %s
Used when an instance member is accessed before it's actually assigned.



	method-hidden (E0202)

	An attribute defined in %s line %s hides this method
Used when a class defines a method which is hidden by an instance attribute
from an ancestor class or set by some client code.



	assigning-non-slot (E0237)

	Assigning to attribute %r not defined in class slots
Used when assigning to an attribute not defined in the class slots.



	duplicate-bases (E0241)

	Duplicate bases for class %r
Used when a class has duplicate bases.



	inconsistent-mro (E0240)

	Inconsistent method resolution order for class %r
Used when a class has an inconsistent method resolution order.



	inherit-non-class (E0239)

	Inheriting %r, which is not a class.
Used when a class inherits from something which is not a class.



	invalid-slots (E0238)

	Invalid __slots__ object
Used when an invalid __slots__ is found in class. Only a string, an iterable
or a sequence is permitted.



	invalid-slots-object (E0236)

	Invalid object %r in __slots__, must contain only non empty strings
Used when an invalid (non-string) object occurs in __slots__.



	no-method-argument (E0211)

	Method has no argument
Used when a method which should have the bound instance as first argument has
no argument defined.



	no-self-argument (E0213)

	Method should have "self" as first argument
Used when a method has an attribute different the "self" as first argument.
This is considered as an error since this is a so common convention that you
shouldn't break it!



	unexpected-special-method-signature (E0302)

	The special method %r expects %s param(s), %d %s given
Emitted when a special method was defined with an invalid number of
parameters. If it has too few or too many, it might not work at all.



	non-iterator-returned (E0301)

	__iter__ returns non-iterator
Used when an __iter__ method returns something which is not an iterable (i.e.
has no __next__ method)



	invalid-length-returned (E0303)

	__len__ does not return non-negative integer
Used when a __len__ method returns something which is not a non-negative
integer



	protected-access (W0212)

	Access to a protected member %s of a client class
Used when a protected member (i.e. class member with a name beginning with an
underscore) is access outside the class or a descendant of the class where
it's defined.



	attribute-defined-outside-init (W0201)

	Attribute %r defined outside __init__
Used when an instance attribute is defined outside the __init__ method.



	no-init (W0232)

	Class has no __init__ method
Used when a class has no __init__ method, neither its parent classes.



	abstract-method (W0223)

	Method %r is abstract in class %r but is not overridden
Used when an abstract method (i.e. raise NotImplementedError) is not
overridden in concrete class.



	arguments-differ (W0221)

	Parameters differ from %s %r method
Used when a method has a different number of arguments than in the implemented
interface or in an overridden method.



	signature-differs (W0222)

	Signature differs from %s %r method
Used when a method signature is different than in the implemented interface or
in an overridden method.



	bad-staticmethod-argument (W0211)

	Static method with %r as first argument
Used when a static method has "self" or a value specified in valid-
classmethod-first-arg option or valid-metaclass-classmethod-first-arg option
as first argument.



	useless-super-delegation (W0235)

	Useless super delegation in method %r
Used whenever we can detect that an overridden method is useless, relying on
super() delegation to do the same thing as another method from the MRO.



	non-parent-init-called (W0233)

	__init__ method from a non direct base class %r is called
Used when an __init__ method is called on a class which is not in the direct
ancestors for the analysed class.



	super-init-not-called (W0231)

	__init__ method from base class %r is not called
Used when an ancestor class method has an __init__ method which is not called
by a derived class.



	useless-object-inheritance (R0205)

	Class %r inherits from object, can be safely removed from bases in python3
Used when a class inherit from object, which under python3 is implicit, hence
can be safely removed from bases.



	no-classmethod-decorator (R0202)

	Consider using a decorator instead of calling classmethod
Used when a class method is defined without using the decorator syntax.



	no-staticmethod-decorator (R0203)

	Consider using a decorator instead of calling staticmethod
Used when a static method is defined without using the decorator syntax.



	no-self-use (R0201)

	Method could be a function
Used when a method doesn't use its bound instance, and so could be written as
a function.



	single-string-used-for-slots (C0205)

	Class __slots__ should be a non-string iterable
Used when a class __slots__ is a simple string, rather than an iterable.



	bad-classmethod-argument (C0202)

	Class method %s should have %s as first argument
Used when a class method has a first argument named differently than the value
specified in valid-classmethod-first-arg option (default to "cls"),
recommended to easily differentiate them from regular instance methods.



	bad-mcs-classmethod-argument (C0204)

	Metaclass class method %s should have %s as first argument
Used when a metaclass class method has a first argument named differently than
the value specified in valid-metaclass-classmethod-first-arg option (default
to "mcs"), recommended to easily differentiate them from regular instance
methods.



	bad-mcs-method-argument (C0203)

	Metaclass method %s should have %s as first argument
Used when a metaclass method has a first argument named differently than the
value specified in valid-classmethod-first-arg option (default to "cls"),
recommended to easily differentiate them from regular instance methods.



	method-check-failed (F0202)

	Unable to check methods signature (%s / %s)
Used when Pylint has been unable to check methods signature compatibility for
an unexpected reason. Please report this kind if you don't make sense of it.










Design checker

Verbatim name of the checker is design.


Design checker Options


	max-args

	Maximum number of arguments for function / method.

Default: 5



	max-locals

	Maximum number of locals for function / method body.

Default: 15



	max-returns

	Maximum number of return / yield for function / method body.

Default: 6



	max-branches

	Maximum number of branch for function / method body.

Default: 12



	max-statements

	Maximum number of statements in function / method body.

Default: 50



	max-parents

	Maximum number of parents for a class (see R0901).

Default: 7



	max-attributes

	Maximum number of attributes for a class (see R0902).

Default: 7



	min-public-methods

	Minimum number of public methods for a class (see R0903).

Default: 2



	max-public-methods

	Maximum number of public methods for a class (see R0904).

Default: 20



	max-bool-expr

	Maximum number of boolean expressions in an if statement.

Default: 5








Design checker Messages


	too-few-public-methods (R0903)

	Too few public methods (%s/%s)
Used when class has too few public methods, so be sure it's really worth it.



	too-many-ancestors (R0901)

	Too many ancestors (%s/%s)
Used when class has too many parent classes, try to reduce this to get a
simpler (and so easier to use) class.



	too-many-arguments (R0913)

	Too many arguments (%s/%s)
Used when a function or method takes too many arguments.



	too-many-boolean-expressions (R0916)

	Too many boolean expressions in if statement (%s/%s)
Used when an if statement contains too many boolean expressions.



	too-many-branches (R0912)

	Too many branches (%s/%s)
Used when a function or method has too many branches, making it hard to
follow.



	too-many-instance-attributes (R0902)

	Too many instance attributes (%s/%s)
Used when class has too many instance attributes, try to reduce this to get a
simpler (and so easier to use) class.



	too-many-locals (R0914)

	Too many local variables (%s/%s)
Used when a function or method has too many local variables.



	too-many-public-methods (R0904)

	Too many public methods (%s/%s)
Used when class has too many public methods, try to reduce this to get a
simpler (and so easier to use) class.



	too-many-return-statements (R0911)

	Too many return statements (%s/%s)
Used when a function or method has too many return statement, making it hard
to follow.



	too-many-statements (R0915)

	Too many statements (%s/%s)
Used when a function or method has too many statements. You should then split
it in smaller functions / methods.










Exceptions checker

Verbatim name of the checker is exceptions.


Exceptions checker Options


	overgeneral-exceptions

	Exceptions that will emit a warning when being caught. Defaults to
"BaseException, Exception".

Default: BaseException,Exception








Exceptions checker Messages


	bad-except-order (E0701)

	Bad except clauses order (%s)
Used when except clauses are not in the correct order (from the more specific
to the more generic). If you don't fix the order, some exceptions may not be
caught by the most specific handler.



	catching-non-exception (E0712)

	Catching an exception which doesn't inherit from Exception: %s
Used when a class which doesn't inherit from Exception is used as an exception
in an except clause.



	bad-exception-context (E0703)

	Exception context set to something which is not an exception, nor None
Used when using the syntax "raise ... from ...", where the exception context
is not an exception, nor None.



	notimplemented-raised (E0711)

	NotImplemented raised - should raise NotImplementedError
Used when NotImplemented is raised instead of NotImplementedError



	raising-bad-type (E0702)

	Raising %s while only classes or instances are allowed
Used when something which is neither a class, an instance or a string is
raised (i.e. a TypeError will be raised).



	raising-non-exception (E0710)

	Raising a new style class which doesn't inherit from BaseException
Used when a new style class which doesn't inherit from BaseException is
raised.



	misplaced-bare-raise (E0704)

	The raise statement is not inside an except clause
Used when a bare raise is not used inside an except clause. This generates an
error, since there are no active exceptions to be reraised. An exception to
this rule is represented by a bare raise inside a finally clause, which might
work, as long as an exception is raised inside the try block, but it is
nevertheless a code smell that must not be relied upon.



	duplicate-except (W0705)

	Catching previously caught exception type %s
Used when an except catches a type that was already caught by a previous
handler.



	broad-except (W0703)

	Catching too general exception %s
Used when an except catches a too general exception, possibly burying
unrelated errors.



	raising-format-tuple (W0715)

	Exception arguments suggest string formatting might be intended
Used when passing multiple arguments to an exception constructor, the first of
them a string literal containing what appears to be placeholders intended for
formatting



	binary-op-exception (W0711)

	Exception to catch is the result of a binary "%s" operation
Used when the exception to catch is of the form "except A or B:". If intending
to catch multiple, rewrite as "except (A, B):"



	wrong-exception-operation (W0716)

	Invalid exception operation. %s
Used when an operation is done against an exception, but the operation is not
valid for the exception in question. Usually emitted when having binary
operations between exceptions in except handlers.



	bare-except (W0702)

	No exception type(s) specified
Used when an except clause doesn't specify exceptions type to catch.



	try-except-raise (W0706)

	The except handler raises immediately
Used when an except handler uses raise as its first or only operator. This is
useless because it raises back the exception immediately. Remove the raise
operator or the entire try-except-raise block!










Format checker

Verbatim name of the checker is format.


Format checker Options


	max-line-length

	Maximum number of characters on a single line.

Default: 100



	ignore-long-lines

	Regexp for a line that is allowed to be longer than the limit.

Default: ^\s*(# )?<?https?://\S+>?$



	single-line-if-stmt

	Allow the body of an if to be on the same line as the test if there is no
else.



	single-line-class-stmt

	Allow the body of a class to be on the same line as the declaration if body
contains single statement.



	no-space-check

	List of optional constructs for which whitespace checking is disabled. dict-
separator is used to allow tabulation in dicts, etc.: {1  : 1,n222: 2}.
trailing-comma allows a space between comma and closing bracket: (a, ).
empty-line allows space-only lines.

Default: trailing-comma,dict-separator



	max-module-lines

	Maximum number of lines in a module.

Default: 1000



	indent-string

	String used as indentation unit. This is usually "    " (4 spaces) or "t" (1
tab).

Default: '    '



	indent-after-paren

	Number of spaces of indent required inside a hanging or continued line.

Default: 4



	expected-line-ending-format

	Expected format of line ending, e.g. empty (any line ending), LF or CRLF.








Format checker Messages


	bad-indentation (W0311)

	Bad indentation. Found %s %s, expected %s
Used when an unexpected number of indentation's tabulations or spaces has been
found.



	mixed-indentation (W0312)

	Found indentation with %ss instead of %ss
Used when there are some mixed tabs and spaces in a module.



	unnecessary-semicolon (W0301)

	Unnecessary semicolon
Used when a statement is ended by a semi-colon (";"), which isn't necessary
(that's python, not C ;).



	bad-whitespace (C0326)

	%s space %s %s %s
Used when a wrong number of spaces is used around an operator, bracket or
block opener.



	missing-final-newline (C0304)

	Final newline missing
Used when the last line in a file is missing a newline.



	line-too-long (C0301)

	Line too long (%s/%s)
Used when a line is longer than a given number of characters.



	mixed-line-endings (C0327)

	Mixed line endings LF and CRLF
Used when there are mixed (LF and CRLF) newline signs in a file.



	multiple-statements (C0321)

	More than one statement on a single line
Used when more than on statement are found on the same line.



	too-many-lines (C0302)

	Too many lines in module (%s/%s)
Used when a module has too many lines, reducing its readability.



	trailing-newlines (C0305)

	Trailing newlines
Used when there are trailing blank lines in a file.



	trailing-whitespace (C0303)

	Trailing whitespace
Used when there is whitespace between the end of a line and the newline.



	unexpected-line-ending-format (C0328)

	Unexpected line ending format. There is '%s' while it should be '%s'.
Used when there is different newline than expected.



	superfluous-parens (C0325)

	Unnecessary parens after %r keyword
Used when a single item in parentheses follows an if, for, or other keyword.



	bad-continuation (C0330)

	Wrong %s indentation%s%s.
TODO










Imports checker

Verbatim name of the checker is imports.


Imports checker Options


	deprecated-modules

	Deprecated modules which should not be used, separated by a comma.

Default: optparse,tkinter.tix



	import-graph

	Create a graph of every (i.e. internal and external) dependencies in the
given file (report RP0402 must not be disabled).



	ext-import-graph

	Create a graph of external dependencies in the given file (report RP0402 must
not be disabled).



	int-import-graph

	Create a graph of internal dependencies in the given file (report RP0402 must
not be disabled).



	known-standard-library

	Force import order to recognize a module as part of the standard
compatibility libraries.



	known-third-party

	Force import order to recognize a module as part of a third party library.

Default: enchant



	analyse-fallback-blocks

	Analyse import fallback blocks. This can be used to support both Python 2 and
3 compatible code, which means that the block might have code that exists
only in one or another interpreter, leading to false positives when analysed.



	allow-wildcard-with-all

	Allow wildcard imports from modules that define __all__.








Imports checker Messages


	relative-beyond-top-level (E0402)

	Attempted relative import beyond top-level package
Used when a relative import tries to access too many levels in the current
package.



	import-error (E0401)

	Unable to import %s
Used when pylint has been unable to import a module.



	import-self (W0406)

	Module import itself
Used when a module is importing itself.



	reimported (W0404)

	Reimport %r (imported line %s)
Used when a module is reimported multiple times.



	relative-import (W0403)

	Relative import %r, should be %r
Used when an import relative to the package directory is detected. This
message can't be emitted when using Python >= 3.0.



	deprecated-module (W0402)

	Uses of a deprecated module %r
Used a module marked as deprecated is imported.



	wildcard-import (W0401)

	Wildcard import %s
Used when from module import * is detected.



	misplaced-future (W0410)

	__future__ import is not the first non docstring statement
Python 2.5 and greater require __future__ import to be the first non docstring
statement in the module.



	cyclic-import (R0401)

	Cyclic import (%s)
Used when a cyclic import between two or more modules is detected.



	wrong-import-order (C0411)

	%s should be placed before %s
Used when PEP8 import order is not respected (standard imports first, then
third-party libraries, then local imports)



	wrong-import-position (C0413)

	Import "%s" should be placed at the top of the module
Used when code and imports are mixed



	useless-import-alias (C0414)

	Import alias does not rename original package
Used when an import alias is same as original package.e.g using import numpy
as numpy instead of import numpy as np



	ungrouped-imports (C0412)

	Imports from package %s are not grouped
Used when imports are not grouped by packages



	multiple-imports (C0410)

	Multiple imports on one line (%s)
Used when import statement importing multiple modules is detected.








Imports checker Reports


	RP0401

	External dependencies



	RP0402

	Modules dependencies graph










Logging checker

Verbatim name of the checker is logging.


Logging checker Options


	logging-modules

	Logging modules to check that the string format arguments are in logging
function parameter format.

Default: logging



	logging-format-style

	Format style used to check logging format string. old means using %
formatting, while new is for {} formatting.

Default: old








Logging checker Messages


	logging-format-truncated (E1201)

	Logging format string ends in middle of conversion specifier
Used when a logging statement format string terminates before the end of a
conversion specifier.



	logging-too-few-args (E1206)

	Not enough arguments for logging format string
Used when a logging format string is given too few arguments.



	logging-too-many-args (E1205)

	Too many arguments for logging format string
Used when a logging format string is given too many arguments.



	logging-unsupported-format (E1200)

	Unsupported logging format character %r (%#02x) at index %d
Used when an unsupported format character is used in a logging statement
format string.



	logging-not-lazy (W1201)

	Specify string format arguments as logging function parameters
Used when a logging statement has a call form of "logging.<logging
method>(format_string % (format_args...))". Such calls should leave string
interpolation to the logging method itself and be written "logging.<logging
method>(format_string, format_args...)" so that the program may avoid
incurring the cost of the interpolation in those cases in which no message
will be logged. For more, see http://www.python.org/dev/peps/pep-0282/.



	logging-format-interpolation (W1202)

	Use % formatting in logging functions and pass the % parameters as arguments
Used when a logging statement has a call form of "logging.<logging
method>(format_string.format(format_args...))". Such calls should use %
formatting instead, but leave interpolation to the logging function by passing
the parameters as arguments.



	logging-fstring-interpolation (W1203)

	Use % formatting in logging functions and pass the % parameters as arguments
Used when a logging statement has a call form of "logging.method(f"..."))".
Such calls should use % formatting instead, but leave interpolation to the
logging function by passing the parameters as arguments.










Metrics checker

Verbatim name of the checker is metrics.


Metrics checker Reports


	RP0701

	Raw metrics










Miscellaneous checker

Verbatim name of the checker is miscellaneous.


Miscellaneous checker Options


	notes

	List of note tags to take in consideration, separated by a comma.

Default: FIXME,XXX,TODO








Miscellaneous checker Messages


	fixme (W0511)

	Used when a warning note as FIXME or XXX is detected.



	invalid-encoded-data (W0512)

	Cannot decode using encoding "%s", unexpected byte at position %d
Used when a source line cannot be decoded using the specified source file
encoding. This message can't be emitted when using Python >= 3.0.



	use-symbolic-message-instead (I0023)

	Used when a message is enabled or disabled by id.










Newstyle checker

Verbatim name of the checker is newstyle.


Newstyle checker Messages


	bad-super-call (E1003)

	Bad first argument %r given to super()
Used when another argument than the current class is given as first argument
of the super builtin.



	missing-super-argument (E1004)

	Missing argument to super()
Used when the super builtin didn't receive an argument. This message can't be
emitted when using Python >= 3.0.










Python3 checker

Verbatim name of the checker is python3.


Python3 checker Messages


	unpacking-in-except (E1603)

	Implicit unpacking of exceptions is not supported in Python 3
Python3 will not allow implicit unpacking of exceptions in except clauses. See
http://www.python.org/dev/peps/pep-3110/



	import-star-module-level (E1609)

	Import * only allowed at module level
Used when the import star syntax is used somewhere else than the module level.
This message can't be emitted when using Python >= 3.0.



	non-ascii-bytes-literal (E1610)

	Non-ascii bytes literals not supported in 3.x
Used when non-ascii bytes literals are found in a program. They are no longer
supported in Python 3. This message can't be emitted when using Python >= 3.0.



	parameter-unpacking (E1602)

	Parameter unpacking specified
Used when parameter unpacking is specified for a function(Python 3 doesn't
allow it)



	long-suffix (E1606)

	Use of long suffix
Used when "l" or "L" is used to mark a long integer. This will not work in
Python 3, since int and long types have merged. This message can't be
emitted when using Python >= 3.0.



	old-octal-literal (E1608)

	Use of old octal literal
Used when encountering the old octal syntax, removed in Python 3. To use the
new syntax, prepend 0o on the number. This message can't be emitted when using
Python >= 3.0.



	old-ne-operator (E1607)

	Use of the <> operator
Used when the deprecated "<>" operator is used instead of "!=". This is
removed in Python 3. This message can't be emitted when using Python >= 3.0.



	backtick (E1605)

	Use of the `` operator
Used when the deprecated "``" (backtick) operator is used instead of the str()
function.



	old-raise-syntax (E1604)

	Use raise ErrorClass(args) instead of raise ErrorClass, args.
Used when the alternate raise syntax 'raise foo, bar' is used instead of
'raise foo(bar)'.



	print-statement (E1601)

	print statement used
Used when a print statement is used (print is a function in Python 3)



	deprecated-types-field (W1652)

	Accessing a deprecated fields on the types module
Used when accessing a field on types that has been removed in Python 3.



	deprecated-itertools-function (W1651)

	Accessing a deprecated function on the itertools module
Used when accessing a function on itertools that has been removed in Python 3.



	deprecated-string-function (W1649)

	Accessing a deprecated function on the string module
Used when accessing a string function that has been deprecated in Python 3.



	deprecated-operator-function (W1657)

	Accessing a removed attribute on the operator module
Used when accessing a field on operator module that has been removed in Python
3.



	deprecated-sys-function (W1660)

	Accessing a removed attribute on the sys module
Used when accessing a field on sys module that has been removed in Python 3.



	deprecated-urllib-function (W1658)

	Accessing a removed attribute on the urllib module
Used when accessing a field on urllib module that has been removed or moved in
Python 3.



	xreadlines-attribute (W1659)

	Accessing a removed xreadlines attribute
Used when accessing the xreadlines() function on a file stream, removed in
Python 3.



	metaclass-assignment (W1623)

	Assigning to a class's __metaclass__ attribute
Used when a metaclass is specified by assigning to __metaclass__ (Python 3
specifies the metaclass as a class statement argument)



	next-method-called (W1622)

	Called a next() method on an object
Used when an object's next() method is called (Python 3 uses the next() built-
in function)



	dict-iter-method (W1620)

	Calling a dict.iter*() method
Used for calls to dict.iterkeys(), itervalues() or iteritems() (Python 3 lacks
these methods)



	dict-view-method (W1621)

	Calling a dict.view*() method
Used for calls to dict.viewkeys(), viewvalues() or viewitems() (Python 3 lacks
these methods)



	exception-message-attribute (W1645)

	Exception.message removed in Python 3
Used when the message attribute is accessed on an Exception. Use
str(exception) instead.



	eq-without-hash (W1641)

	Implementing __eq__ without also implementing __hash__
Used when a class implements __eq__ but not __hash__. In Python 2, objects get
object.__hash__ as the default implementation, in Python 3 objects get None as
their default __hash__ implementation if they also implement __eq__.



	indexing-exception (W1624)

	Indexing exceptions will not work on Python 3
Indexing exceptions will not work on Python 3. Use exception.args[index]
instead.



	bad-python3-import (W1648)

	Module moved in Python 3
Used when importing a module that no longer exists in Python 3.



	raising-string (W1625)

	Raising a string exception
Used when a string exception is raised. This will not work on Python 3.



	standarderror-builtin (W1611)

	StandardError built-in referenced
Used when the StandardError built-in function is referenced (missing from
Python 3)



	comprehension-escape (W1662)

	Using a variable that was bound inside a comprehension
Emitted when using a variable, that was bound in a comprehension handler,
outside of the comprehension itself. On Python 3 these variables will be
deleted outside of the comprehension.



	exception-escape (W1661)

	Using an exception object that was bound by an except handler
Emitted when using an exception, that was bound in an except handler, outside
of the except handler. On Python 3 these exceptions will be deleted once they
get out of the except handler.



	deprecated-str-translate-call (W1650)

	Using str.translate with deprecated deletechars parameters
Used when using the deprecated deletechars parameters from str.translate. Use
re.sub to remove the desired characters



	using-cmp-argument (W1640)

	Using the cmp argument for list.sort / sorted
Using the cmp argument for list.sort or the sorted builtin should be avoided,
since it was removed in Python 3. Using either key or functools.cmp_to_key
should be preferred.



	cmp-method (W1630)

	__cmp__ method defined
Used when a __cmp__ method is defined (method is not used by Python 3)



	coerce-method (W1614)

	__coerce__ method defined
Used when a __coerce__ method is defined (method is not used by Python 3)



	delslice-method (W1615)

	__delslice__ method defined
Used when a __delslice__ method is defined (method is not used by Python 3)



	div-method (W1642)

	__div__ method defined
Used when a __div__ method is defined. Using __truediv__ and setting__div__
= __truediv__ should be preferred.(method is not used by Python 3)



	getslice-method (W1616)

	__getslice__ method defined
Used when a __getslice__ method is defined (method is not used by Python 3)



	hex-method (W1628)

	__hex__ method defined
Used when a __hex__ method is defined (method is not used by Python 3)



	idiv-method (W1643)

	__idiv__ method defined
Used when an __idiv__ method is defined. Using __itruediv__ and
setting__idiv__ = __itruediv__ should be preferred.(method is not used by
Python 3)



	nonzero-method (W1629)

	__nonzero__ method defined
Used when a __nonzero__ method is defined (method is not used by Python 3)



	oct-method (W1627)

	__oct__ method defined
Used when an __oct__ method is defined (method is not used by Python 3)



	rdiv-method (W1644)

	__rdiv__ method defined
Used when a __rdiv__ method is defined. Using __rtruediv__ and
setting__rdiv__ = __rtruediv__ should be preferred.(method is not used by
Python 3)



	setslice-method (W1617)

	__setslice__ method defined
Used when a __setslice__ method is defined (method is not used by Python 3)



	apply-builtin (W1601)

	apply built-in referenced
Used when the apply built-in function is referenced (missing from Python 3)



	basestring-builtin (W1602)

	basestring built-in referenced
Used when the basestring built-in function is referenced (missing from Python
3)



	buffer-builtin (W1603)

	buffer built-in referenced
Used when the buffer built-in function is referenced (missing from Python 3)



	cmp-builtin (W1604)

	cmp built-in referenced
Used when the cmp built-in function is referenced (missing from Python 3)



	coerce-builtin (W1605)

	coerce built-in referenced
Used when the coerce built-in function is referenced (missing from Python 3)



	dict-items-not-iterating (W1654)

	dict.items referenced when not iterating
Used when dict.items is referenced in a non-iterating context (returns an
iterator in Python 3)



	dict-keys-not-iterating (W1655)

	dict.keys referenced when not iterating
Used when dict.keys is referenced in a non-iterating context (returns an
iterator in Python 3)



	dict-values-not-iterating (W1656)

	dict.values referenced when not iterating
Used when dict.values is referenced in a non-iterating context (returns an
iterator in Python 3)



	old-division (W1619)

	division w/o __future__ statement
Used for non-floor division w/o a float literal or from __future__ import
division (Python 3 returns a float for int division unconditionally)



	execfile-builtin (W1606)

	execfile built-in referenced
Used when the execfile built-in function is referenced (missing from Python 3)



	file-builtin (W1607)

	file built-in referenced
Used when the file built-in function is referenced (missing from Python 3)



	filter-builtin-not-iterating (W1639)

	filter built-in referenced when not iterating
Used when the filter built-in is referenced in a non-iterating context
(returns an iterator in Python 3)



	no-absolute-import (W1618)

	import missing `from __future__ import absolute_import`
Used when an import is not accompanied by from __future__ import
absolute_import (default behaviour in Python 3)



	input-builtin (W1632)

	input built-in referenced
Used when the input built-in is referenced (backwards-incompatible semantics
in Python 3)



	intern-builtin (W1634)

	intern built-in referenced
Used when the intern built-in is referenced (Moved to sys.intern in Python 3)



	long-builtin (W1608)

	long built-in referenced
Used when the long built-in function is referenced (missing from Python 3)



	map-builtin-not-iterating (W1636)

	map built-in referenced when not iterating
Used when the map built-in is referenced in a non-iterating context (returns
an iterator in Python 3)



	next-method-defined (W1653)

	next method defined
Used when a next method is defined that would be an iterator in Python 2 but
is treated as a normal function in Python 3.



	invalid-str-codec (W1646)

	non-text encoding used in str.decode
Used when using str.encode or str.decode with a non-text encoding. Use codecs
module to handle arbitrary codecs.



	range-builtin-not-iterating (W1638)

	range built-in referenced when not iterating
Used when the range built-in is referenced in a non-iterating context (returns
an iterator in Python 3)



	raw_input-builtin (W1609)

	raw_input built-in referenced
Used when the raw_input built-in function is referenced (missing from Python
3)



	reduce-builtin (W1610)

	reduce built-in referenced
Used when the reduce built-in function is referenced (missing from Python 3)



	reload-builtin (W1626)

	reload built-in referenced
Used when the reload built-in function is referenced (missing from Python 3).
You can use instead imp.reload or importlib.reload.



	round-builtin (W1633)

	round built-in referenced
Used when the round built-in is referenced (backwards-incompatible semantics
in Python 3)



	sys-max-int (W1647)

	sys.maxint removed in Python 3
Used when accessing sys.maxint. Use sys.maxsize instead.



	unichr-builtin (W1635)

	unichr built-in referenced
Used when the unichr built-in is referenced (Use chr in Python 3)



	unicode-builtin (W1612)

	unicode built-in referenced
Used when the unicode built-in function is referenced (missing from Python 3)



	xrange-builtin (W1613)

	xrange built-in referenced
Used when the xrange built-in function is referenced (missing from Python 3)



	zip-builtin-not-iterating (W1637)

	zip built-in referenced when not iterating
Used when the zip built-in is referenced in a non-iterating context (returns
an iterator in Python 3)










Refactoring checker

Verbatim name of the checker is refactoring.


Refactoring checker Options


	max-nested-blocks

	Maximum number of nested blocks for function / method body

Default: 5



	never-returning-functions

	Complete name of functions that never returns. When checking for
inconsistent-return-statements if a never returning function is called then
it will be considered as an explicit return statement and no message will be
printed.

Default: sys.exit








Refactoring checker Messages


	simplify-boolean-expression (R1709)

	Boolean expression may be simplified to %s
Emitted when redundant pre-python 2.5 ternary syntax is used.



	consider-using-in (R1714)

	Consider merging these comparisons with "in" to %r
To check if a variable is equal to one of many values,combine the values into
a tuple and check if the variable is contained "in" it instead of checking for
equality against each of the values.This is faster and less verbose.



	consider-merging-isinstance (R1701)

	Consider merging these isinstance calls to isinstance(%s, (%s))
Used when multiple consecutive isinstance calls can be merged into one.



	consider-using-dict-comprehension (R1717)

	Consider using a dictionary comprehension
Although there is nothing syntactically wrong with this code, it is hard to
read and can be simplified to a dict comprehension.Also it is faster since you
don't need to create another transient list



	consider-using-set-comprehension (R1718)

	Consider using a set comprehension
Although there is nothing syntactically wrong with this code, it is hard to
read and can be simplified to a set comprehension.Also it is faster since you
don't need to create another transient list



	consider-using-get (R1715)

	Consider using dict.get for getting values from a dict if a key is present or a default if not
Using the builtin dict.get for getting a value from a dictionary if a key is
present or a default if not, is simpler and considered more idiomatic,
although sometimes a bit slower



	consider-using-join (R1713)

	Consider using str.join(sequence) for concatenating strings from an iterable
Using str.join(sequence) is faster, uses less memory and increases readability
compared to for-loop iteration.



	consider-using-ternary (R1706)

	Consider using ternary (%s)
Used when one of known pre-python 2.5 ternary syntax is used.



	consider-swap-variables (R1712)

	Consider using tuple unpacking for swapping variables
You do not have to use a temporary variable in order to swap variables. Using
"tuple unpacking" to directly swap variables makes the intention more clear.



	trailing-comma-tuple (R1707)

	Disallow trailing comma tuple
In Python, a tuple is actually created by the comma symbol, not by the
parentheses. Unfortunately, one can actually create a tuple by misplacing a
trailing comma, which can lead to potential weird bugs in your code. You
should always use parentheses explicitly for creating a tuple.



	stop-iteration-return (R1708)

	Do not raise StopIteration in generator, use return statement instead
According to PEP479, the raise of StopIteration to end the loop of a generator
may lead to hard to find bugs. This PEP specify that raise StopIteration has
to be replaced by a simple return statement



	inconsistent-return-statements (R1710)

	Either all return statements in a function should return an expression, or none of them should.
According to PEP8, if any return statement returns an expression, any return
statements where no value is returned should explicitly state this as return
None, and an explicit return statement should be present at the end of the
function (if reachable)



	redefined-argument-from-local (R1704)

	Redefining argument with the local name %r
Used when a local name is redefining an argument, which might suggest a
potential error. This is taken in account only for a handful of name binding
operations, such as for iteration, with statement assignment and exception
handler assignment.



	chained-comparison (R1716)

	Simplify chained comparison between the operands
This message is emitted when pylint encounters boolean operation like"a < b
and b < c", suggesting instead to refactor it to "a < b < c"



	simplifiable-if-expression (R1719)

	The if expression can be replaced with %s
Used when an if expression can be replaced with 'bool(test)'.



	simplifiable-if-statement (R1703)

	The if statement can be replaced with %s
Used when an if statement can be replaced with 'bool(test)'.



	too-many-nested-blocks (R1702)

	Too many nested blocks (%s/%s)
Used when a function or a method has too many nested blocks. This makes the
code less understandable and maintainable.



	no-else-raise (R1720)

	Unnecessary "%s" after "raise"
Used in order to highlight an unnecessary block of code following an if
containing a raise statement. As such, it will warn when it encounters an else
following a chain of ifs, all of them containing a raise statement.



	no-else-return (R1705)

	Unnecessary "%s" after "return"
Used in order to highlight an unnecessary block of code following an if
containing a return statement. As such, it will warn when it encounters an
else following a chain of ifs, all of them containing a return statement.



	useless-return (R1711)

	Useless return at end of function or method
Emitted when a single "return" or "return None" statement is found at the end
of function or method definition. This statement can safely be removed because
Python will implicitly return None



	unneeded-not (C0113)

	Consider changing "%s" to "%s"
Used when a boolean expression contains an unneeded negation.



	consider-iterating-dictionary (C0201)

	Consider iterating the dictionary directly instead of calling .keys()
Emitted when the keys of a dictionary are iterated through the .keys() method.
It is enough to just iterate through the dictionary itself, as in "for key in
dictionary".



	consider-using-enumerate (C0200)

	Consider using enumerate instead of iterating with range and len
Emitted when code that iterates with range and len is encountered. Such code
can be simplified by using the enumerate builtin.



	len-as-condition (C1801)

	Do not use `len(SEQUENCE)` to determine if a sequence is empty
Used when Pylint detects that len(sequence) is being used inside a condition
to determine if a sequence is empty. Instead of comparing the length to 0,
rely on the fact that empty sequences are false.










Similarities checker

Verbatim name of the checker is similarities.


Similarities checker Options


	min-similarity-lines

	Minimum lines number of a similarity.

Default: 4



	ignore-comments

	Ignore comments when computing similarities.

Default: yes



	ignore-docstrings

	Ignore docstrings when computing similarities.

Default: yes



	ignore-imports

	Ignore imports when computing similarities.








Similarities checker Messages


	duplicate-code (R0801)

	Similar lines in %s files
Indicates that a set of similar lines has been detected among multiple file.
This usually means that the code should be refactored to avoid this
duplication.








Similarities checker Reports


	RP0801

	Duplication










Spelling checker

Verbatim name of the checker is spelling.


Spelling checker Options


	spelling-dict

	Spelling dictionary name. Available dictionaries: none. To make it working
install python-enchant package..



	spelling-ignore-words

	List of comma separated words that should not be checked.



	spelling-private-dict-file

	A path to a file that contains private dictionary; one word per line.



	spelling-store-unknown-words

	Tells whether to store unknown words to indicated private dictionary in
--spelling-private-dict-file option instead of raising a message.



	max-spelling-suggestions

	Limits count of emitted suggestions for spelling mistakes.

Default: 4








Spelling checker Messages


	invalid-characters-in-docstring (C0403)

	Invalid characters %r in a docstring
Used when a word in docstring cannot be checked by enchant.



	wrong-spelling-in-comment (C0401)

	Wrong spelling of a word '%s' in a comment:
Used when a word in comment is not spelled correctly.



	wrong-spelling-in-docstring (C0402)

	Wrong spelling of a word '%s' in a docstring:
Used when a word in docstring is not spelled correctly.










Stdlib checker

Verbatim name of the checker is stdlib.


Stdlib checker Messages


	invalid-envvar-value (E1507)

	%s does not support %s type argument
Env manipulation functions support only string type arguments. See
https://docs.python.org/3/library/os.html#os.getenv.



	bad-open-mode (W1501)

	"%s" is not a valid mode for open.
Python supports: r, w, a[, x] modes with b, +, and U (only with r) options.
See http://docs.python.org/2/library/functions.html#open



	invalid-envvar-default (W1508)

	%s default type is %s. Expected str or None.
Env manipulation functions return None or str values. Supplying anything
different as a default may cause bugs. See
https://docs.python.org/3/library/os.html#os.getenv.



	redundant-unittest-assert (W1503)

	Redundant use of %s with constant value %r
The first argument of assertTrue and assertFalse is a condition. If a constant
is passed as parameter, that condition will be always true. In this case a
warning should be emitted.



	shallow-copy-environ (W1507)

	Using copy.copy(os.environ). Use os.environ.copy() instead.
os.environ is not a dict object but proxy object, so shallow copy has still
effects on original object. See https://bugs.python.org/issue15373 for
reference.



	boolean-datetime (W1502)

	Using datetime.time in a boolean context.
Using datetime.time in a boolean context can hide subtle bugs when the time
they represent matches midnight UTC. This behaviour was fixed in Python 3.5.
See http://bugs.python.org/issue13936 for reference. This message can't be
emitted when using Python >= 3.5.



	deprecated-method (W1505)

	Using deprecated method %s()
The method is marked as deprecated and will be removed in a future version of
Python. Consider looking for an alternative in the documentation.



	subprocess-popen-preexec-fn (W1509)

	Using preexec_fn keyword which may be unsafe in the presence of threads
The preexec_fn parameter is not safe to use in the presence of threads in your
application. The child process could deadlock before exec is called. If you
must use it, keep it trivial! Minimize the number of libraries you call
into.https://docs.python.org/3/library/subprocess.html#popen-constructor



	bad-thread-instantiation (W1506)

	threading.Thread needs the target function
The warning is emitted when a threading.Thread class is instantiated without
the target function being passed. By default, the first parameter is the group
param, not the target param.










String checker

Verbatim name of the checker is string.


String checker Options


	check-str-concat-over-line-jumps

	This flag controls whether the implicit-str-concat-in-sequence should
generate a warning on implicit string concatenation in sequences defined over
several lines.








String checker Messages


	bad-string-format-type (E1307)

	Argument %r does not match format type %r
Used when a type required by format string is not suitable for actual argument
type



	format-needs-mapping (E1303)

	Expected mapping for format string, not %s
Used when a format string that uses named conversion specifiers is used with
an argument that is not a mapping.



	truncated-format-string (E1301)

	Format string ends in middle of conversion specifier
Used when a format string terminates before the end of a conversion specifier.



	missing-format-string-key (E1304)

	Missing key %r in format string dictionary
Used when a format string that uses named conversion specifiers is used with a
dictionary that doesn't contain all the keys required by the format string.



	mixed-format-string (E1302)

	Mixing named and unnamed conversion specifiers in format string
Used when a format string contains both named (e.g. '%(foo)d') and unnamed
(e.g. '%d') conversion specifiers. This is also used when a named conversion
specifier contains * for the minimum field width and/or precision.



	too-few-format-args (E1306)

	Not enough arguments for format string
Used when a format string that uses unnamed conversion specifiers is given too
few arguments



	bad-str-strip-call (E1310)

	Suspicious argument in %s.%s call
The argument to a str.{l,r,}strip call contains a duplicate character,



	too-many-format-args (E1305)

	Too many arguments for format string
Used when a format string that uses unnamed conversion specifiers is given too
many arguments.



	bad-format-character (E1300)

	Unsupported format character %r (%#02x) at index %d
Used when an unsupported format character is used in a format string.



	anomalous-unicode-escape-in-string (W1402)

	Anomalous Unicode escape in byte string: '%s'. String constant might be missing an r or u prefix.
Used when an escape like u is encountered in a byte string where it has no
effect.



	anomalous-backslash-in-string (W1401)

	Anomalous backslash in string: '%s'. String constant might be missing an r prefix.
Used when a backslash is in a literal string but not as an escape.



	duplicate-string-formatting-argument (W1308)

	Duplicate string formatting argument %r, consider passing as named argument
Used when we detect that a string formatting is repeating an argument instead
of using named string arguments



	format-combined-specification (W1305)

	Format string contains both automatic field numbering and manual field specification
Used when a PEP 3101 format string contains both automatic field numbering
(e.g. '{}') and manual field specification (e.g. '{0}').



	bad-format-string-key (W1300)

	Format string dictionary key should be a string, not %s
Used when a format string that uses named conversion specifiers is used with a
dictionary whose keys are not all strings.



	implicit-str-concat-in-sequence (W1403)

	Implicit string concatenation found in %s
String literals are implicitly concatenated in a literal iterable definition :
maybe a comma is missing ?



	bad-format-string (W1302)

	Invalid format string
Used when a PEP 3101 format string is invalid.



	missing-format-attribute (W1306)

	Missing format attribute %r in format specifier %r
Used when a PEP 3101 format string uses an attribute specifier ({0.length}),
but the argument passed for formatting doesn't have that attribute.



	missing-format-argument-key (W1303)

	Missing keyword argument %r for format string
Used when a PEP 3101 format string that uses named fields doesn't receive one
or more required keywords.



	unused-format-string-argument (W1304)

	Unused format argument %r
Used when a PEP 3101 format string that uses named fields is used with an
argument that is not required by the format string.



	unused-format-string-key (W1301)

	Unused key %r in format string dictionary
Used when a format string that uses named conversion specifiers is used with a
dictionary that contains keys not required by the format string.



	invalid-format-index (W1307)

	Using invalid lookup key %r in format specifier %r
Used when a PEP 3101 format string uses a lookup specifier ({a[1]}), but the
argument passed for formatting doesn't contain or doesn't have that key as an
attribute.










Typecheck checker

Verbatim name of the checker is typecheck.


Typecheck checker Options


	ignore-on-opaque-inference

	This flag controls whether pylint should warn about no-member and similar
checks whenever an opaque object is returned when inferring. The inference
can return multiple potential results while evaluating a Python object, but
some branches might not be evaluated, which results in partial inference. In
that case, it might be useful to still emit no-member and other checks for
the rest of the inferred objects.

Default: yes



	ignore-mixin-members

	Tells whether missing members accessed in mixin class should be ignored. A
mixin class is detected if its name ends with "mixin" (case insensitive).

Default: yes



	ignore-none

	Tells whether to warn about missing members when the owner of the attribute
is inferred to be None.

Default: yes



	ignored-modules

	List of module names for which member attributes should not be checked
(useful for modules/projects where namespaces are manipulated during runtime
and thus existing member attributes cannot be deduced by static analysis. It
supports qualified module names, as well as Unix pattern matching.



	ignored-classes

	List of class names for which member attributes should not be checked (useful
for classes with dynamically set attributes). This supports the use of
qualified names.

Default: optparse.Values,thread._local,_thread._local



	generated-members

	List of members which are set dynamically and missed by pylint inference
system, and so shouldn't trigger E1101 when accessed. Python regular
expressions are accepted.



	contextmanager-decorators

	List of decorators that produce context managers, such as
contextlib.contextmanager. Add to this list to register other decorators that
produce valid context managers.

Default: contextlib.contextmanager



	missing-member-hint-distance

	The minimum edit distance a name should have in order to be considered a
similar match for a missing member name.

Default: 1



	missing-member-max-choices

	The total number of similar names that should be taken in consideration when
showing a hint for a missing member.

Default: 1



	missing-member-hint

	Show a hint with possible names when a member name was not found. The aspect
of finding the hint is based on edit distance.

Default: yes








Typecheck checker Messages


	unsupported-assignment-operation (E1137)

	%r does not support item assignment
Emitted when an object does not support item assignment (i.e. doesn't define
__setitem__ method).



	unsupported-delete-operation (E1138)

	%r does not support item deletion
Emitted when an object does not support item deletion (i.e. doesn't define
__delitem__ method).



	invalid-unary-operand-type (E1130)

	Emitted when a unary operand is used on an object which does not support this
type of operation.



	unsupported-binary-operation (E1131)

	Emitted when a binary arithmetic operation between two operands is not
supported.



	no-member (E1101)

	%s %r has no %r member%s
Used when a variable is accessed for an unexistent member.



	not-callable (E1102)

	%s is not callable
Used when an object being called has been inferred to a non callable object.



	redundant-keyword-arg (E1124)

	Argument %r passed by position and keyword in %s call
Used when a function call would result in assigning multiple values to a
function parameter, one value from a positional argument and one from a
keyword argument.



	assignment-from-no-return (E1111)

	Assigning result of a function call, where the function has no return
Used when an assignment is done on a function call but the inferred function
doesn't return anything.



	assignment-from-none (E1128)

	Assigning result of a function call, where the function returns None
Used when an assignment is done on a function call but the inferred function
returns nothing but None.



	not-context-manager (E1129)

	Context manager '%s' doesn't implement __enter__ and __exit__.
Used when an instance in a with statement doesn't implement the context
manager protocol(__enter__/__exit__).



	unhashable-dict-key (E1140)

	Dict key is unhashable
Emitted when a dict key is not hashable (i.e. doesn't define __hash__ method).



	repeated-keyword (E1132)

	Got multiple values for keyword argument %r in function call
Emitted when a function call got multiple values for a keyword.



	invalid-metaclass (E1139)

	Invalid metaclass %r used
Emitted whenever we can detect that a class is using, as a metaclass,
something which might be invalid for using as a metaclass.



	missing-kwoa (E1125)

	Missing mandatory keyword argument %r in %s call
Used when a function call does not pass a mandatory keyword-only argument.



	no-value-for-parameter (E1120)

	No value for argument %s in %s call
Used when a function call passes too few arguments.



	not-an-iterable (E1133)

	Non-iterable value %s is used in an iterating context
Used when a non-iterable value is used in place where iterable is expected



	not-a-mapping (E1134)

	Non-mapping value %s is used in a mapping context
Used when a non-mapping value is used in place where mapping is expected



	invalid-sequence-index (E1126)

	Sequence index is not an int, slice, or instance with __index__
Used when a sequence type is indexed with an invalid type. Valid types are
ints, slices, and objects with an __index__ method.



	invalid-slice-index (E1127)

	Slice index is not an int, None, or instance with __index__
Used when a slice index is not an integer, None, or an object with an
__index__ method.



	too-many-function-args (E1121)

	Too many positional arguments for %s call
Used when a function call passes too many positional arguments.



	unexpected-keyword-arg (E1123)

	Unexpected keyword argument %r in %s call
Used when a function call passes a keyword argument that doesn't correspond to
one of the function's parameter names.



	unsupported-membership-test (E1135)

	Value '%s' doesn't support membership test
Emitted when an instance in membership test expression doesn't implement
membership protocol (__contains__/__iter__/__getitem__).



	unsubscriptable-object (E1136)

	Value '%s' is unsubscriptable
Emitted when a subscripted value doesn't support subscription (i.e. doesn't
define __getitem__ method or __class_getitem__ for a class).



	keyword-arg-before-vararg (W1113)

	Keyword argument before variable positional arguments list in the definition of %s function
When defining a keyword argument before variable positional arguments, one can
end up in having multiple values passed for the aforementioned parameter in
case the method is called with keyword arguments.



	c-extension-no-member (I1101)

	%s %r has no %r member%s, but source is unavailable. Consider adding this module to extension-pkg-whitelist if you want to perform analysis based on run-time introspection of living objects.
Used when a variable is accessed for non-existent member of C extension. Due
to unavailability of source static analysis is impossible, but it may be
performed by introspecting living objects in run-time.










Variables checker

Verbatim name of the checker is variables.


Variables checker Options


	init-import

	Tells whether we should check for unused import in __init__ files.



	dummy-variables-rgx

	A regular expression matching the name of dummy variables (i.e. expected to
not be used).

Default: _+$|(_[a-zA-Z0-9_]*[a-zA-Z0-9]+?$)|dummy|^ignored_|^unused_



	additional-builtins

	List of additional names supposed to be defined in builtins. Remember that
you should avoid defining new builtins when possible.



	callbacks

	List of strings which can identify a callback function by name. A callback
name must start or end with one of those strings.

Default: cb_,_cb



	redefining-builtins-modules

	List of qualified module names which can have objects that can redefine
builtins.

Default: six.moves,past.builtins,future.builtins,builtins,io



	ignored-argument-names

	Argument names that match this expression will be ignored. Default to name
with leading underscore.

Default: _.*|^ignored_|^unused_



	allow-global-unused-variables

	Tells whether unused global variables should be treated as a violation.

Default: yes








Variables checker Messages


	unpacking-non-sequence (E0633)

	Attempting to unpack a non-sequence%s
Used when something which is not a sequence is used in an unpack assignment



	invalid-all-object (E0604)

	Invalid object %r in __all__, must contain only strings
Used when an invalid (non-string) object occurs in __all__.



	no-name-in-module (E0611)

	No name %r in module %r
Used when a name cannot be found in a module.



	undefined-variable (E0602)

	Undefined variable %r
Used when an undefined variable is accessed.



	undefined-all-variable (E0603)

	Undefined variable name %r in __all__
Used when an undefined variable name is referenced in __all__.



	used-before-assignment (E0601)

	Using variable %r before assignment
Used when a local variable is accessed before its assignment.



	cell-var-from-loop (W0640)

	Cell variable %s defined in loop
A variable used in a closure is defined in a loop. This will result in all
closures using the same value for the closed-over variable.



	global-variable-undefined (W0601)

	Global variable %r undefined at the module level
Used when a variable is defined through the "global" statement but the
variable is not defined in the module scope.



	self-cls-assignment (W0642)

	Invalid assignment to %s in method
Invalid assignment to self or cls in instance or class method respectively.



	unbalanced-tuple-unpacking (W0632)

	Possible unbalanced tuple unpacking with sequence%s: left side has %d label(s), right side has %d value(s)
Used when there is an unbalanced tuple unpacking in assignment



	possibly-unused-variable (W0641)

	Possibly unused variable %r
Used when a variable is defined but might not be used. The possibility comes
from the fact that locals() might be used, which could consume or not the said
variable



	redefined-builtin (W0622)

	Redefining built-in %r
Used when a variable or function override a built-in.



	redefine-in-handler (W0623)

	Redefining name %r from %s in exception handler
Used when an exception handler assigns the exception to an existing name



	redefined-outer-name (W0621)

	Redefining name %r from outer scope (line %s)
Used when a variable's name hides a name defined in the outer scope.



	unused-import (W0611)

	Unused %s
Used when an imported module or variable is not used.



	unused-argument (W0613)

	Unused argument %r
Used when a function or method argument is not used.



	unused-wildcard-import (W0614)

	Unused import %s from wildcard import
Used when an imported module or variable is not used from a 'from X import
*' style import.



	unused-variable (W0612)

	Unused variable %r
Used when a variable is defined but not used.



	global-variable-not-assigned (W0602)

	Using global for %r but no assignment is done
Used when a variable is defined through the "global" statement but no
assignment to this variable is done.



	undefined-loop-variable (W0631)

	Using possibly undefined loop variable %r
Used when a loop variable (i.e. defined by a for loop or a list comprehension
or a generator expression) is used outside the loop.



	global-statement (W0603)

	Using the global statement
Used when you use the "global" statement to update a global variable. Pylint
just try to discourage this usage. That doesn't mean you cannot use it !



	global-at-module-level (W0604)

	Using the global statement at the module level
Used when you use the "global" statement at the module level since it has no
effect















          

      

      

    

  

    
      
          
            
  
Pylint and C extensions

If you are getting the dreaded no-member error, there is a possibility that
either pylint found a bug in your code or that it actually tries to lint
a C extension module.

Linting C extension modules is not supported out of the box, especially since
pylint has no way to get an AST object out of the extension module.

But pylint actually has a mechanism which you might use in case you
want to analyze C extensions. pylint has a flag, called extension-pkg-whitelist,
through which you can tell it to import that module and to build an AST from that
imported module:

$ pylint --extension-pkg-whitelist=your_c_extension





Be aware though that using this flag means that extensions are loaded into the
active Python interpreter and may run arbitrary code, which you may not want. This
is the reason why we disable by default loading C extensions. In case you do not want
the hassle of passing C extensions module with this flag all the time, you
can enable unsafe-load-any-extension in your configuration file, which will
build AST objects from all the C extensions that pylint encounters:

$ pylint --unsafe-load-any-extension=y





Alternatively, since pylint emits a separate error for attributes that cannot be
found in C extensions, c-extension-no-member, you can disable this error for
your project.





          

      

      

    

  

    
      
          
            
  
Development



	Contributing









          

      

      

    

  

    
      
          
            
  
Contributing


Bug reports, feedback

You think you have found a bug in Pylint? Well, this may be the case
since Pylint is under heavy development!

Please take the time to check if it is already in the issue tracker at
https://github.com/PyCQA/pylint

If you cannot find it in the tracker, create a new issue there or discuss your
problem on the code-quality@python.org mailing list.

The code-quality mailing list is also a nice place to provide feedback about
Pylint, since it is shared with other tools that aim at improving the quality of
python code.

Note that if you don't find something you have expected in Pylint's
issue tracker, it may be because it is an issue with one of its dependencies, namely
astroid:


	https://github.com/PyCQA/astroid







Mailing lists

You can subscribe to this mailing list at
http://mail.python.org/mailman/listinfo/code-quality

Archives are available at
http://mail.python.org/pipermail/code-quality/

Archives before April 2013 are available at
http://lists.logilab.org/pipermail/python-projects/




Repository

Pylint is developed using the git [https://git-scm.com/] distributed version control system.

You can clone Pylint and its dependencies from

git clone https://github.com/PyCQA/pylint
git clone https://github.com/PyCQA/astroid





Got a change for Pylint?  Below are a few steps you should take to make sure
your patch gets accepted.


	Test your code


	Pylint is very well tested, with a high good code coverage.
It has two types of tests, usual unittests and functional tests.

The usual unittests can be found under /pylint/test directory and they can
be used for testing almost anything Pylint related. But for the ease
of testing Pylint's messages, we also have the concept of functional tests.



	You should also run all the tests to ensure that your change isn't
breaking one. You can run the tests using the tox [http://tox.readthedocs.io/en/latest/] package, as in:

python -m tox
python -m tox -epy36 # for Python 3.6 suite only
python -m tox -epylint # for running Pylint over Pylint's codebase
python -m tox -eformatting # for running formatting checks over Pylint's codebase







	It's usually a good idea to run tox [http://tox.readthedocs.io/en/latest/] with --recreate. This is needed because
the tox environment might use an older version of astroid [https://github.com/pycqa/astroid], which can cause various failures
when you are running against the latest pylint:

python -m tox --recreate # The entire tox environment is going to be recreated







	To run only a specific test suite, use a pattern for the test filename
(without the .py extension), as in:

python -m tox -e py36 -- -k test_functional
python -m tox -e py36 -- -k  \*func\*







	Since we just use pytest [http://pytest.readthedocs.io/en/latest/] to run the tests, you can also use it as well,
although we highly recommend using tox [http://tox.readthedocs.io/en/latest/] instead:

pytest pylint -k test_functional







	pylint uses black [https://github.com/ambv/black] Python autoformatter for formatting its code.
We have a pre-commit hook which should take care of the autoformatting for you
for when you are working on a patch. To enable it, do the following:



	install pre-commit using pip install pre-commit


	then run pre-commit install in the pylint root directory to enable the git hooks.













	Add a short entry to the ChangeLog describing the change, except for internal
implementation only changes. Not usually required, but for changes other than small
bugs we also add a couple of sentences in the release document for that release,
(What's New section). For the release document we usually write some more details,
and it is also a good place to offer examples on how the new change is supposed to work.


	Add yourself to the CONTRIBUTORS file, if you are not already there.


	Write a comprehensive commit message


	Relate your change to an issue in the tracker if such an issue exists (see
Closing issues via commit messages [https://help.github.com/articles/closing-issues-via-commit-messages/] of the GitHub documentation for more
information on this)


	Document your change, if it is a non-trivial one.


	Send a pull request from GitHub (see About pull requests [https://help.github.com/articles/using-pull-requests/] for more insight
about this topic)







Functional Tests

These are residing under '/pylint/test/functional' and they are formed of multiple
components. First, each Python file is considered to be a test case and it
should be accompanied by a .txt file, having the same name, with the messages
that are supposed to be emitted by the given test file.

In the Python file, each line for which Pylint is supposed to emit a message
has to be annotated with a comment in the form # [message_symbol], as in:

a, b, c = 1 # [unbalanced-tuple-unpacking]





If multiple messages are expected on the same line, then this syntax can be used:

a, b, c = 1.test # [unbalanced-tuple-unpacking, no-member]





The syntax of the .txt file has to be this:

symbol:line_number:function_or_class:Expected message





For example, this is a valid message line:

abstract-class-instantiated:79:main:Abstract class 'BadClass' with abstract methods instantiated





If the Python file is expected to not emit any errors, then the .txt file has to be empty.
If you need special control over Pylint's flag, you can also create a .rc file, which
can have sections of Pylint's configuration.

During development, it's sometimes helpful to run all functional tests in your
current environment in order to have faster feedback. Run with:

python pylint/test/test_functional.py








Tips for Getting Started with Pylint Development


	Read the Technical Reference. It gives a short walkthrough of the pylint
codebase and will help you identify where you will need to make changes
for what you are trying to implement.


	astroid.extract_node() is your friend. Most checkers are AST based,
so you will likely need to interact with astroid [https://astroid.readthedocs.io/en/latest/api/general.html#module-astroid].
A short example of how to use astroid.extract_node() is given
here.


	When fixing a bug for a specific check, search the code for the warning
message to find where the warning is raised,
and therefore where the logic for that code exists.







Building the documentation

We use tox for building the documentation:

$ tox -e docs











          

      

      

    

  

    
      
          
            
  
Frequently Asked Questions


1. About Pylint


1.1 What is Pylint?

Pylint is a static code checker [http://en.wikipedia.org/wiki/Static_code_analysis], meaning it can analyse your code without
actually running it. Pylint checks for errors, tries to enforce a coding
standard, and tries to enforce a coding style.






2. Installation


2.1 How do I install Pylint?

Everything should be explained on Installation.




2.2 What kind of versioning system does Pylint use?

Pylint uses the git distributed version control system. The URL of the
repository is: https://github.com/PyCQA/pylint . To get the latest version of
Pylint from the repository, simply invoke

git clone https://github.com/PyCQA/pylint








2.3 What are Pylint's dependencies?

Pylint depends on astroid [https://github.com/PyCQA/astroid] and a couple of other packages.
See the following section for details on what versions of Python are
supported.




2.4 What versions of Python is Pylint supporting?

Since Pylint 2.0, the supported running environment is Python 3.4+.

That is, Pylint 2.0 is still able to analyze Python 2 files, but some
specific checks might not work, as they would assume that their running
environment was Python 2.

If you need to run pylint with Python 2, then Pylint 1.8 or 1.9 is for you.
We will still do backports of bug fixes, and possibly for various Python 3
compatibility checks, at least until 2020, after which we'll stop support
Python 2 altogether.






3. Running Pylint


3.1 Can I give pylint a file as an argument instead of a module?

Pylint expects the name of a package or module as its argument. As a
convenience,
you can give it a file name if it's possible to guess a module name from
the file's path using the python path. Some examples :

"pylint mymodule.py" should always work since the current working
directory is automatically added on top of the python path

"pylint directory/mymodule.py" will work if "directory" is a python
package (i.e. has an __init__.py file), an implicit namespace package
or if "directory" is in the python path.

"pylint /whatever/directory/mymodule.py" will work if either:



	"/whatever/directory" is in the python path


	your cwd is "/whatever/directory"


	"directory" is a python package and "/whatever" is in the python
path


	"directory" is an implicit namespace package and is in the python path.


	"directory" is a python package and your cwd is "/whatever" and so
on...










3.2 Where is the persistent data stored to compare between successive runs?

Analysis data are stored as a pickle file in a directory which is
localized using the following rules:


	value of the PYLINTHOME environment variable if set


	
	".pylint.d" subdirectory of the user's home directory if it is found

	(not always findable on Windows platforms)







	".pylint.d" directory in the current directory







3.3 How do I find the option name (for pylintrc) corresponding to a specific command line option?

You can always generate a sample pylintrc file with --generate-rcfile
Every option present on the command line before this will be included in
the rc file

For example:

pylint --disable=bare-except,invalid-name --class-rgx='[A-Z][a-z]+' --generate-rcfile








3.4 I'd rather not run Pylint from the command line. Can I integrate it with my editor?

Much probably. Read Editor and IDE integration






4. Message Control


4.1 Is it possible to locally disable a particular message?

Yes, this feature has been added in Pylint 0.11. This may be done by
adding "#pylint: disable=some-message,another-one" at the desired block level
or at the end of the desired line of code




4.2 Is there a way to disable a message for a particular module only?

Yes, you can disable or enable (globally disabled) messages at the
module level by adding the corresponding option in a comment at the
top of the file:

# pylint: disable=wildcard-import, method-hidden
# pylint: enable=too-many-lines








4.3 How can I tell Pylint to never check a given module?

With Pylint < 0.25, add "#pylint: disable-all" at the beginning of the
module. Pylint 0.26.1 and up have renamed that directive to
"#pylint: skip-file" (but the first version will be kept for backward
compatibility).

In order to ease finding which modules are ignored an Information-level message
file-ignored is emitted. With recent versions of Pylint, if you use the old
syntax, an additional deprecated-disable-all message is emitted.




4.4 Do I have to remember all these numbers?

No, starting from 0.25.3, you can use symbolic names for messages:

# pylint: disable=fixme, line-too-long








4.5 I have a callback function where I have no control over received arguments. How do I avoid getting unused argument warnings?

Prefix (ui) the callback's name by cb_, as in cb_onclick(...). By
doing so arguments usage won't be checked. Another solution is to
use one of the names defined in the "dummy-variables" configuration
variable for unused argument ("_" and "dummy" by default).




4.6 What is the format of the configuration file?

Pylint uses ConfigParser from the standard library to parse the configuration
file.  It means that if you need to disable a lot of messages, you can use
tricks like:

# disable wildcard-import, method-hidden and too-many-lines because I do
# not want it
disable= wildcard-import,
 method-hidden,
 too-many-lines








4.7 Why are there a bunch of messages disabled by default?

pylint does have some messages disabled by default, either because
they are prone to false positives or that they are opinionated enough
for not being included as default messages. But most of the disabled
messages are from the Python 3 porting checker, which is disabled by
default. It needs special activation with the --py3k flag.






5. Classes and Inheritance


5.1 When is Pylint considering a class as an abstract class?

A class is considered as an abstract class if at least one of its
methods is doing nothing but raising NotImplementedError.




5.2 How do I avoid "access to undefined member" messages in my mixin classes?

To do so you have to set the ignore-mixin-members option to
"yes" (this is the default value) and to name your mixin class with
a name which ends with "mixin" (whatever case).






6. Troubleshooting


6.1 Pylint gave my code a negative rating out of ten. That can't be right!

Even though the final rating Pylint renders is nominally out of ten, there's no
lower bound on it. By default, the formula to calculate score is

10.0 - ((float(5 * error + warning + refactor + convention) / statement) * 10)





However, this option can be changed in the Pylint rc file. If having negative
values really bugs you, you can set the formula to be the maximum of 0 and the
above expression.




6.2 I think I found a bug in Pylint. What should I do?

Read Bug reports, feedback




6.3 I have a question about Pylint that isn't answered here.

Read Mailing lists









          

      

      

    

  

    
      
          
            
  
Some projects using Pylint

The following projects are known to use Pylint to help develop better
Python code:


	edX (https://github.com/edx)


	qutebrowser (https://github.com/The-Compiler/qutebrowser)


	Odoo (https://github.com/OCA)


	Landscape.io (https://github.com/landscapeio/)


	Codacy (https://github.com/Codacy/)


	SaltStack (https://github.com/saltstack)


	CodeFactor (https://github.com/codefactor-io)


	many more...








          

      

      

    

  

    
      
          
            
  
What's New in Pylint

High level descriptions of the most important changes between major Pylint versions.



	What's New in Pylint 2.3

	What's New in Pylint 2.2

	What's New in Pylint 2.1

	What's New in Pylint 2.0

	What's New In Pylint 1.9

	What's New In Pylint 1.8

	What's New In Pylint 1.7

	What's New In Pylint 1.6





The "Changelog" contains all nontrivial changes to Pylint for the current version.



	Pylint's ChangeLog
	What's New in Pylint 2.3.1?

	What's New in Pylint 2.3.0?

	What's New in Pylint 2.2.2?

	What's New in Pylint 2.2.1?

	What's New in Pylint 2.2?

	What's New in Pylint 2.1.1?

	What's New in Pylint 2.1?

	What's New in Pylint 2.0?

	What's New in Pylint 1.9?

	What's New in Pylint 1.8.1?

	What's New in Pylint 1.8?

	What's New in Pylint 1.7.1?

	What's New in Pylint 1.7?

	What's new in Pylint 1.6.3?

	What's new in Pylint 1.6.2?

	What's new in Pylint 1.6.1?

	What's New in Pylint 1.6.0?

	What's New in Pylint 1.5.5?

	What's New in Pylint 1.5.4?

	What's New in Pylint 1.5.3?

	What's New in Pylint 1.5.2?

	What's New in Pylint 1.5.1?

	What's New in Pylint 1.5.0?

	What's New in Pylint 1.4.3?

	What's New in Pylint 1.4.2?

	What's New in Pylint 1.4.1?

	What's New in Pylint 1.4.0?

	What's New in Pylint 1.3.0?

	What's New in Pylint 1.2.1?

	What's New in Pylint 1.2.0?

	What's New in Pylint 1.1.0?

	What's New in Pylint 1.0.0?

	What's New in Pylint 0.28.0?

	What's New in Pylint 0.27.0?

	What's New in Pylint 0.26.0?

	What's New in Pylint 0.25.2?

	What's New in Pylint 0.25.1?

	What's New in Pylint 0.25.0?

	What's New in Pylint 0.24.0?

	What's New in Pylint 0.23.0?

	What's New in Pylint 0.22.0?

	What's New in Pylint 0.21.4?

	What's New in Pylint 0.21.3?

	What's New in Pylint 0.21.2?

	What's New in Pylint 0.21.1?

	What's New in Pylint 0.21.0?

	What's New in Pylint 0.20.0?

	What's New in Pylint 0.19.0?

	What's New in Pylint 0.18.0?

	What's New in Pylint 0.17.0?

	What's New in Pylint 0.16.0?

	What's New in Pylint 0.15.2?

	What's New in Pylint 0.15.1?

	What's New in Pylint 0.15.0?

	What's New in Pylint 0.14.0?

	What's New in Pylint 0.13.2?

	What's New in Pylint 0.13.1?

	What's New in Pylint 0.13.0?

	What's New in Pylint 0.12.2?

	What's New in Pylint 0.12.1?

	What's New in Pylint 0.12.0?

	What's New in Pylint 0.11.0?

	What's New in Pylint 0.10.0?

	What's New in Pylint 0.9.0?

	What's New in Pylint 0.8.1?

	What's New in Pylint 0.8.0?

	What's New in Pylint 0.7.0?

	What's New in Pylint 0.6.4?

	What's New in Pylint 0.6.3?

	What's New in Pylint 0.6.2?

	What's New in Pylint 0.6.1?

	What's New in Pylint 0.6.0?

	What's New in Pylint 0.5.0?

	What's New in Pylint 0.4.2?

	What's New in Pylint 0.4.1?

	What's New in Pylint 0.4.0?

	What's New in Pylint 0.3.3?

	What's New in Pylint 0.3.2?

	What's New in Pylint 0.3.1?

	What's New in Pylint 0.3.0?

	What's New in Pylint 0.2.1?

	What's New in Pylint 0.2.0?

	What's New in Pylint 0.1.2?

	What's New in Pylint 0.1.1?

	What's New in Pylint 0.1?













          

      

      

    

  

    
      
          
            
  
What's New in Pylint 2.3


	Release

	2.3



	Date

	2019-02-27






Summary -- Release highlights


	This release improves the performance of the 2.X series after it was affected by a performance regression a couple of releases ago.







New checkers


	We added a new check message wrong-exception-operation.
This is emitted when an operation is done against an exception, but the operation
is not valid for the exception in question. Usually emitted when having
binary operations between exceptions in except handlers.

Closes #2494



	We added a new no-else-raise warning similar to no-else-return

Closes #2558



	We added a new option check-str-concat-over-line-jumps to check
implicit-str-concat-in-sequence over multiple lines.







Other Changes

Quite a lot of bug fixes and improvements went into this release, here's a handful of them.
For the full changes, check the Changelog.


	We no longer emit *-not-iterating checks for builtins consumed by itertools


	We fixed some false positives for no-self-argument and unsubscriptable-object
when using __class_getitem__ (new in Python 3.7)


	pylint now upports Ellipsis as a synonym for pass statements.


	fixme gets triggered only on comments.


	pylint exempts starred unpacking from *-not-iterating Python 3 checks.


	compare-to-zero is now less zealous by checking against equality and identity.




``yield from`` is exempted from ``-not-iterating`` Python 3 checks.


	A false positive with not-async-context-manager caused by not understanding
contextlib.asynccontextmanager was fixed.


	We refactored bad-reversed-sequence to account for more objects that can define __reversed__.


	no-member is now emitted for enums when they lack a member.


	Plugins can now use the load_configuration() hook.
This hook is executed after configuration is loaded to prevent overwriting plugin
specific configuration via user-based configuration.


	There's a new command line option list-groups for listing all the check groups
pylint knows about. This is useful to know what groups you can disable or enable
individually.










          

      

      

    

  

    
      
          
            
  
What's New in Pylint 2.2


	Release

	2.2



	Date

	2018-11-25






Summary -- Release highlights




New checkers


	String checker now reports format string type mismatches.


	duplicate-string-formatting-argument was added for detecting duplicate string
formatting arguments that should be passed instead as named arguments.


	logging-format-style is a new option for the logging checker for usage of
str.format() style format strings in calls to loggers.

It accepts two options: --logging-format-style=old for using % style formatting,
which is the assumed default, and --logging-format-style=new for using {} style formatting.



	implicit-str-concat-in-sequence detects string concatenation inside lists, sets & tuples.

Example of code that would generate such warning:

woops = ('a', 'b' 'c')












Other Changes


	try-except-raise checker now handles multilevel inheritance hirerachy for exceptions correctly.

Close #2484



	Ignore import x.y.z as z cases for checker useless-import-alias.


	unnecessary-pass is now also emitted when a function or class contains only docstring and pass statement,
in which case, docstring is enough for empty definition.


	Fix false positive undefined-variable and used-before-assignment with nonlocal keyword usage.


	Fix exceptions being raised when one of the params is not a ClassDef for checkers.utils.is_subclass_of().


	pylint now picks the latest value from the inferred values of the exception that gets
raised, when looking for raising-non-exception. This helps when reusing a variable name
for multiple types, since pylint was picking just the first inferred value, leading
to spurious false positives.

Close #2431



	pylint used to emit a not-an-iterable error when looking at coroutines built
with asyncio.coroutine. This is no longer the case as we handle coroutines explicitly.

Close #996



	pylint used to emit a unused-variable error if unused import was found in the function. Now instead of
unused-variable, unused-import is emitted.

Close #2421











          

      

      

    

  

    
      
          
            
  
What's New in Pylint 2.1


	Release

	2.1



	Date

	2018-08-01






Summary -- Release highlights


	This release mostly includes fixes for bugs found after the launch of 2.0.







New checkers


	A new check was added, misplaced-format-function.

This message is emitted when pylint detects that a format function is called on non str object.
This can occur due to wrong placement of closing bracket, e.g

print('value: {}').format(123) # bad

print('value: {}'.format(123)) # good












Other Changes


	try-except-raise check was demoted from an error to a warning, as part of issue #2323.


	Correctly handle the new name of the Python implementation of the abc module.

In Python 3.7, the abc module has both a C implementation as well as a Python one,
but the Python implementation has a different file name that what pylint was expecting,
resulting in some checks getting confused.



	Modules with __getattr__ are exempted by default from no-member

There's no easy way to figure out if a module has a particular member when
the said module uses __getattr__, which is a new addition to Python 3.7.
Instead we assume the safe thing to do, in the same way we do for classes,
and skip those modules from checking.



	invalid name is no longer triggered for function and attribute names longer
than 30 characters. The upper limit was removed completely.


	Fix false-positive undefined-variable for self referential class name in lamdbas


	no-else-return also specifies the type of the branch that is causing the error.


	Fixed inconsistent behaviour for bad-continuation on first line of file.


	Fixed a bug where pylint was not able to disable certain messages on the last line through
the global disable option.


	pylint no longer emits useless-return when it finds a single statement that is the return itself

We still want to be explicit when a function is supposed to return
an optional value; even though pass could still work, it's not explicit
enough and the function might look like it's missing an implementation.



	Fixed a bug where pylint was crashing when being unable to infer the value of an argument to next()


	pylint no longer emit not-an-iterable when dealing with async iterators.


	pylint gained the ability to specify a default docstring type for when the check cannot guess the type

For this we added a --default-docstring-type command line option.











          

      

      

    

  

    
      
          
            
  
What's New in Pylint 2.0


	Release

	2.0



	Date

	2018-07-15






Summary -- Release highlights


	Dropped support for Python 2. This release will work only on Python 3.4+.

If you need to use pylint with Python 2, you can use Pylint 1.9+. We'll continue
to do bug releases until 2020, when Python 2 goes officially EOL.
pylint will gain the ability to analyze Python 2 files, but some checks might not work
as they will assume that their running environment is Python 2.



	Given the dropping of Python 2, the Python 3 porting mode (enabled via --py3k) can now
also run with Python 3.

The porting mode used to be a no-op on Python 3, but most of the messages can now be emitted
when the running interpreter is Python 3. The only messages that won't be emitted are those that
rely on a particular syntax specific to Python 2, for instance print as a statement.








New checkers


	A new check was added, useless-object-inheritance.

This refactoring message is emitted when pylint detects that a class inherits from object,
which is redundant as in Python 3, every class implicitly inherits from object.

class A(object):
    pass

class A:    # better
    pass







	A new check was added, comparison-with-callable.

This refactoring message is emitted when pylint detects that a comparison with a callable was
made, which might suggest that some parenthesis were omitted, resulting in potential unwanted
behaviour.

def foo():
    return None

def goo():
    return None

if foo == 786:  # bad
    pass

if foo() == 786:    # good
    pass







	A new check was added, chained-comparison.

This refactoring message is emitted if a boolean operation can be simplified by chaining some
of its operations. check below example:

if a < b and b < c:
    pass

if a < b < c:   # better
    pass







	A new check was added, useless-import-alias.

This refactoring message is emitted when an import alias does not rename the original package.

import numpy as numpy # bad
import numpy as np # good
from collection import OrderedDict as OrderedDict # bad
from collection import OrderedDict as ordered_dict # good







	A new check was added, comparison-with-itself.

This refactoring message is emitted when a variable is compared against itself.

if variable == variable:  # bad
    pass







	A new check was added, consider-using-in.

This refactoring message is emitted when a variable is compared against multiple
values concatenated by ors instead of using the faster, more idiomatic "in" check.

if variable == 1 or variable == 2 or variable == 3:  # bad
    pass

if variable in (1, 2, 3):  # good
    pass







	A new check was added, consider-using-get.

This refactoring message is emitted when manually checking if a key is in a dictionary
and getting its value if it is (and optionally a default if not)
instead of the more idiomatic dict.get.

if 'key' in dictionary:  # bad
    variable = dictionary['key']
else:
    variable = 'default'

variable = dictionary.get('key', 'default')  # good







	A new check was added, consider-using-join.

This refactoring message is emitted when using a for loop over an iterable to join strings
instead of the faster, less memory consuming and more idiomatic str.join(sequence).

result = ''  # bad
for number in ['1', '2', '3']:
    result += number

result = ''.join(['1', '2', '3'])  # good







	New useless-return message when function or method ends with a "return" or
"return None" statement and this is the only return statement in the body.


	New use-symbolic-message-instead message when a message is activated or
deactivated by id instead of symbol.
The use of symbol is more explicit and easier to remind.


	A new check was added, consider-swap-variables.

This refactoring message is emitted when using a temporary variable in order
to swap the values of two variables instead of the shorter, more idiomatic
approach with tuple-unpacking.

Instead of a temporary variable, the one-line syntax with commas should be used.

See this style guide [http://docs.python-guide.org/en/latest/writing/style/] document or this swap values presentation [http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html#swap-values] for details.

temp = a  # the wrong way
a = b
b = temp

a, b = b, a  # the right way







	Two new checks, invalid-envvar-value and invalid-envvar-default, were added.

The former is trigger whenever pylint detects that environment variable manipulation
functions uses a different type than strings, while the latter is emitted whenever
the said functions are using a default variable of different type than expected.



	A new check was added, subprocess-popen-preexec-fn,

This refactoring message is emitted when using the keyword argument preexec_fn
when creating subprocess.Popen instances which may be unsafe when used in
the presence of threads.

See subprocess.Popen [https://docs.python.org/3/library/subprocess.html#popen-constructor]
for full warning details.



	New try-except-raise message when an except handler block has a bare
raise statement as its first operator or the exception type being raised
is the same as the one being handled.


	New possibly-unused-variable check added.





This is similar to unused-variable, the only difference is that it is
emitted when we detect a locals() call in the scope of the unused variable.
The locals() call could potentially use the said variable, by consuming
all values that are present up to the point of the call. This new check
allows to disable this error when the user intentionally uses locals()
to consume everything.

For instance, the following code will now trigger this new error:

def func():
    some_value = some_call()
    return locals()









	New unhashable-dict-key check added to detect dict lookups using
unhashable keys such as lists or dicts.


	New self-cls-assignment warning check added.

This is warning if the first argument of an instance/ class method gets
assigned

class Foo(object):
    def foo(self, bar):
        self = bar







	New verbose mode option --verbose to display of extra non-checker-related output. Disabled by default.


	Two new checks were added for recommending dict and set comprehensions where possible.

These two checks are going to flag the following examples:

dict([(k, v) for (k, v) in ...]) # better as {k: v for k, v in ...}
set([k for k in ...]) # better as {k for k in ...}












Other Changes


	A couple of performance improvements brought to astroid should make
pylint should be a bit faster as well.

We added a new flag, max_inferable_values on astroid.MANAGER for
limitting the maximum amount of values that astroid can infer when inferring
values. This change should improve the performance when dealing with large frameworks
such as django.
You can also control this behaviour with pylint --limit-inference-results

We also rewrote how nodes_of_class and get_children methods operate which
should result in a performance boost for a couple of checks.



	Fix a false positive inconsistent-return-statements message when exception is raised inside
an else statement.


	Don't warn for missing-type-doc and/or missing-return-type-doc, if type annotations
exist on the function signature for a parameter and/or return type.


	Fix a false positive inconsistent-return-statements message when if
statement is inside try/except.


	Fix a false positive inconsistent-return-statements message when
while loop are used.


	Fix emission of false positive no-member message for class with
"private" attributes whose name is mangled.


	Fix unused-argument false positives with overshadowed variable in dictionary comprehension.


	Fixing false positive inconsistent-return-statements when
never returning functions are used (i.e such as sys.exit).


	Fix false positive inconsistent-return-statements message when a
function is defined under an if statement.


	Fix false positive inconsistent-return-statements message by
avoiding useless exception inference if the exception is not handled.


	Fix false positive undefined-variable for lambda argument in class definitions


	Suppress false-positive not-callable messages from certain staticmethod descriptors


	Expand ignored-argument-names include starred arguments and keyword arguments


	singleton-comparison will suggest better boolean conditions for negative conditions.


	undefined-loop-variable takes in consideration non-empty iterred objects before emitting.

For instance, if the loop iterable is not empty, this check will no longer be emitted.



	Enum classes no longer trigger too-few-methods


	Special methods now count towards too-few-methods,
and are considered part of the public API.
They are still not counted towards the number of methods for
too-many-methods.


	docparams extension allows abstract methods to document returns
documentation even if the default implementation does not return something.
They also no longer need to document raising a NotImplementedError.


	Skip wildcard import check for __init__.py.


	Don't warn 'useless-super-delegation' if the subclass method has different type annotations.


	Don't warn that a global variable is unused if it is defined by an import

def func():
    global sys
    import sys







	Added basic support for postponed evaluation of function annotations.

If pylint detects the corresponding from __future__ import annotations import,
it will not emit used-before-assignment and undefined-variable in the cases
triggered by the annotations.

More details on the postponed evaluation of annotations can be read in
PEP 563 [https://www.python.org/dev/peps/pep-0563/].



	A new command line option was added, --exit-zero, for the use of continuous integration
scripts which abort if a command returns a non-zero status code.  If the
option is specified, and Pylint runs successfully, it will exit with 0
regardless of the number of lint issues detected.

Configuration errors, parse errors, and calling Pylint with invalid
command-line options all still return a non-zero error code, even if
--exit-zero is specified.



	Don't emit unused-import anymore for typing imports used in type comments. For instance,
in the following example pylint used to complain that Any and List are not used,
while they should be considered used by a type checker.

from typing import Any, List
a = 1 # type: List[Any]







	Fix false positive line-too-long for commented lines at the end of module


	Fix emitting useless-super-delegation when changing the default value of keyword arguments.


	Support typing.TYPE_CHECKING for unused-import errors

When modules are imported under typing.TYPE_CHECKING guard, pylint
will no longer emit unused-import.



	Fix false positive unused-variable in lambda default arguments


	assignment-from-no-return considers methods as well as functions.

If you have a method that doesn't return a value, but later on you assign
a value to a function call to that method (so basically it will be None),
then pylint is going to emit an assignment-from-no-return error.



	A new flag was added, --ignore-none which controls the no-member
behaviour with respect to None values.

Previously pylint was not emitting no-member if it inferred that
the owner of an attribute access is a None value. In some cases,
this might actually cause bugs, so if you want to check for None values
as well, pass --ignore-none=n to pylint.



	Fix false-positive bad-continuation for with statements


	Fix false-positive bad-whitespace message for typing annoatations
with ellipses in them


	Fix false-positive undefined-variable for nested lambdas










          

      

      

    

  

    
      
          
            
  
What's New In Pylint 1.9


	Release

	1.9



	Date

	2018-05-15






Summary -- Release highlights


	None so far







New checkers


	A new Python 3 checker was added to warn about the removed operator.div function.


	A new Python 3 checker was added to warn about accessing functions that have been
moved from the urllib module in corresponding subpackages, such as urllib.request.

from urllib import urlencode





Instead the previous code should use urllib.parse or six.moves to import a
module in a Python 2 and 3 compatible fashion:

from six.moves.urllib.parse import urlencode





To have this working on Python 3 as well, please use the six library:

six.reraise(Exception, "value", tb)







	A new check was added to warn about using unicode raw string literals. This is
a syntax error in Python 3:

a = ur'...'







	Added a new deprecated-sys-function check, emitted when accessing removed sys members.


	Added xreadlines-attribute check, emitted when the xreadlines() attribute is accessed
on a file object.


	Added two new Python 3 porting checks, exception-escape and comprehension-escape

These two are emitted whenever pylint detects that a variable defined in the
said blocks is used outside of the given block. On Python 3 these values are deleted.

try:
  1/0
except ZeroDivisionError as exc:
   ...
print(exc) # This will raise a NameError on Python 3

[i for i in some_iterator if some_condition(i)]
print(i) # This will raise a NameError on Python 3












Other Changes


	defaultdict and subclasses of dict are now handled for dict-iter-* checks. That
means that the following code will now emit warnings for when iteritems and friends
are accessed:

some_dict = defaultdict(list)
...
some_dict.iterkeys()







	Enum classes no longer trigger too-few-methods


	Special methods now count towards too-few-methods,
and are considered part of the public API.
They are still not counted towards the number of methods for
too-many-methods.


	docparams allows abstract methods to document returns documentation even
if the default implementation does not return something.
They also no longer need to document raising a NotImplementedError.










          

      

      

    

  

    
      
          
            
  
What's New In Pylint 1.8


	Release

	1.8



	Date

	2017-12-15






Summary -- Release highlights


	None so far







New checkers


	A new check was added, shallow-copy-environ.

This warning message is emitted when shallow copy of os.environ is created.
Shallow copy of os.environ doesn't work as people may expect. os.environ
is not a dict object but rather a proxy object, so any changes made
on copy may have unexpected effects on os.environ

Instead of copy.copy(os.environ) method os.environ.copy() should be used.

See https://bugs.python.org/issue15373 for details.

import copy
import os
wrong_env_copy = copy.copy(os.environ)  # will emit pylint warning
wrong_env_copy['ENV_VAR'] = 'new_value'  # changes os.environ
assert os.environ['ENV_VAR'] == 'new_value'

good_env_copy = dict(os.environ)  # the right way
good_env_copy['ENV_VAR'] = 'different_value'  # doesn't change os.environ
assert os.environ['ENV_VAR'] == 'new_value'







	A new check was added, keyword-arg-before-vararg.

This warning message is emitted when a function is defined with a keyword
argument appearing before variable-length positional arguments (*args).
This may lead to args list getting modified if keyword argument's value is
not provided in the function call assuming it will take default value provided
in the definition.

def foo(a, b=3, *args):
    print(a, b, args)

# Case1: a=0, b=2, args=(4,5)
foo(0,2,4,5) # 0 2 (4,5) ==> Observed values are same as expected values

# Case2: a=0, b=<default_value>, args=(4,5)
foo(0,4,5) # 0 4 (5,) ==> args list got modified as well as the observed value of b

# Case3: Syntax Error if tried as follows
foo(0,b=2,4,5) # syntax error







	A new check was added, simplify-boolean-expression.

This message is emitted when consider-using-ternary check would emit
not equivalent code, due to truthy element being falsy in boolean context.

value = condition and False or other_value





This flawed construct may be simplified to:

value = other_value







	A new check was added, bad-thread-instantiation.

This message is emitted when the threading.Thread class does not
receive the target argument, but receives just one argument, which
is by default the group parameter.

In the following example, the instantiation will fail, which is definitely
not desired:

import threading
threading.Thread(lambda: print(1)) # Oups, this is the group parameter







	A new Python 3 checker was added to warn about accessing functions that have been
removed from the itertools module izip, imap, iflter, izip_longest, and ifilterfalse.

from itertools import izip
print(list(izip([1, 2], [3])))





Instead use six.moves to import a Python 2 and Python 3 compatible function:

from six.moves import zip
print(list(zip([1, 2], [3])))







	A new Python 3 checker was added to warn about accessing deprecated fields from
the types module like ListType or IntType

from types import ListType
print(isinstance([], ListType))





Instead use the declarations in the builtin namespace:

print(isinstance([], list))







	A new Python 3 checker was added to warn about declaring a next method that
would have implemented the Iterator protocol in Python 2 but is now a normal
method in Python 3.

class Foo(object):
    def next(self):
        return 42





Instead implement a __next__ method and use six.Iterator as a base class
or alias next to __next__:

class Foo(object):
    def __next__(self):
        return 42
    next = __next__







	Three new Python 3 checkers were added to warn about using dictionary methods
in non-iterating contexts.

For example, the following are returning iterators in Python 3:

.. code-block:: python






d = {}
d.keys()[0]
d.items()[0]
d.values() + d.keys()






	A new Python 3 porting check was added, non-ascii-bytes-literals

This message is emitted whenever we detect that a bytes string contain
non-ASCII characters, which results in a SyntaxError on Python 3.



	A new warning, raising-format-tuple, will catch situations where the
intent was likely raising an exception with a formatted message string,
but the actual code did omit the formatting and instead passes template
string and value parameters as separate arguments to the exception
constructor.  So it detects things like

raise SomeError('message about %s', foo)
raise SomeError('message about {}', foo)





which likely were meant instead as

raise SomeError('message about %s' % foo)
raise SomeError('message about {}'.format(foo))





This warning can be ignored on projects which deliberately use lazy
formatting of messages in all user-facing exception handlers.



	Following the recommendations of PEP479 [https://www.python.org/dev/peps/pep-0479] ,a new Python 3.0 checker was added to warn about raising a StopIteration inside
a generator. Raising a StopIteration inside a generator may be due a direct call
to raise StopIteration:

def gen_stopiter():
    yield 1
    yield 2
    yield 3
    raise StopIteration





Instead use a simple return statement

def gen_stopiter():
    yield 1
    yield 2
    yield 3
    return





Raising a StopIteration may also be due to the call to next function with a generator
as argument:

def gen_next_raises_stopiter():
    g = gen_ok()
    while True:
        yield next(g)





In this case, surround the call to next with a try/except block:

def gen_next_raises_stopiter():
    g = gen_ok()
    while True:
        try:
            yield next(g)
        except StopIteration:
            return





The check about raising a StopIteration inside a generator is also valid if the exception
raised inherit from StopIteration.
Close #1385










	A new Python checker was added to warn about using a + operator inside call of logging methods
when one of the operands is a literal string:

import logging
var = "123"
logging.log(logging.INFO, "Var: " + var)





Instead use formatted string and positional arguments :

import logging
var = "123"
logging.log(logging.INFO, "Var: %s", var)







	A new Python checker was added to warn about inconsistent-return-statements. A function or a method
has inconsistent return statements if it returns both explicit and implicit values :

def mix_implicit_explicit_returns(arg):
    if arg < 10:
        return True
    elif arg < 20:
        return





According to PEP8 [https://www.python.org/dev/peps/pep-0008], if any return statement returns an expression,
any return statements where no value is returned should explicitly state this as return None,
and an explicit return statement should be present at the end of the function (if reachable).
Thus, the previous function should be written:

def mix_implicit_explicit_returns(arg):
    if arg < 10:
        return True
    elif arg < 20:
        return None





Close #1267












Other Changes


	Fixing u'' string in superfluous-parens message.


	Configuration options of invalid name checker are significantly redesigned.
Predefined rules for common naming styles were introduced. For typical
setups, user friendly options like --function-naming-style=camelCase may
be used in place of hand-written regular expressions. Default linter config
enforce PEP8-compatible naming style. See documentation for details.


	Raise meaningful exception in case of invalid reporter class (output format)
being selected.


	The docparams extension now allows a property docstring to document both
the property and the setter. Therefore setters can also have no docstring.


	The docparams extension now understands property type syntax.

class Foo(object):
    @property
    def foo(self):
        """My Sphinx style docstring description.

        :type: int
        """
        return 10





class Foo(object):
    @property
    def foo(self):
        """int: My Numpy and Google docstring style description."""
        return 10







	In case of --output-format=json, the dictionary returned holds a new key-value pair.
The key is message-id and the value the message id.


	Spelling checker has a new configuration parameter max-spelling-suggestions, which
affects maximum count of suggestions included in emitted message.


	The invalid-name check contains the name of the template that caused the failure.

For the given code, pylint used to emit invalid-name in the form Invalid constant name var,
without offering any context why var is not such a good name.

With this change, it is now more clear what should be improved for a name to be accepted according to
its corresponding template.



	New configuration flag, suggestion-mode was introduced. When enabled, pylint would
attempt to emit user-friendly suggestions instead of spurious errors for some known
false-positive scenarios. Flag is enabled by default.


	superfluous-parens is no longer wrongly emitted for logical statements involving in operator
(see example below for what used to be false-positive).

foo = None
if 'bar' in (foo or {}):
  pass







	Redefinition of dummy function is now possible. function-redefined message won't be emitted anymore when
dummy functions are redefined.


	missing-param-doc and missing-type-doc are no longer emitted when
Args and Keyword Args are mixed in Google docstring.


	Fix of false positive useless-super-delegation message when
parameters default values are different from those used in the base class.


	Fix of false positive useless-else-on-loop message when break statements
are deeply nested inside loop.


	The Python 3 porting checker no longer emits multiple no-absolute-import per file.


	The Python 3 porting checker respects disabled checkers found in the config file.


	Modules, classes, or methods consist of compound statements that exceed the docstring-min-length
are now correctly emitting missing-docstring


	Fix no wrong-import-order message emitted on ordering of first and third party libraries.
With this fix, pylint distinguishes first and third party modules when checking
import order.


	Fix the ignored pylint disable=fixme directives for comments following
the last statement in a file.


	Fix line-too-long message deactivated by wrong disable directive.
The directive disable=fixme doesn't deactivate anymore the emission
of line-too-long message for long commented lines.


	If the rcfile specified on the command line doesn't exist, then an
IOError exception is raised.


	Fix the wrong scope of disable= directive after a commented line.
For example when a disable=line-too-long directive is at the end of a
long commented line, it no longer disables the emission of line-too-long
message for lines that follow.










          

      

      

    

  

    
      
          
            
  
What's New In Pylint 1.7


	Release

	1.7



	Date

	2017-04-13






Summary -- Release highlights


	None yet.







New checkers


	single-string-used-for-slots check was added, which is used
whenever a class is using a single string as a slot value. While this
is technically not a problem per se, it might trip users when manipulating
the slots value as an iterable, which would in turn iterate over characters
of the slot value. In order to be more straight-forward, always try to use
a container such as a list or a tuple for defining slot values.


	We added a new check, literal-comparison, which is used
whenever pylint can detect a comparison to a literal. This is usually
not what we want and, potentially, error prone. For instance, in the given example,
the first string comparison returns true, since smaller strings are interned
by the interpreter, while for larger ones, it will return False:

mystring = "ok"
if mystring is "ok": # Returns true
    # do stuff

mystring = "a" * 1000
if mystring is ("a" * 1000): # This will return False
    # do stuff





Instead of using the is operator, you should use the == operator for
this use case.



	We added a new refactoring message, consider-merging-isinstance, which is
emitted whenever we can detect that consecutive isinstance calls can be merged
together.
For instance, in this example, we can merge the first two isinstance calls:

# $ cat a.py
if isinstance(x, int) or isinstance(x, float):
    pass
if isinstance(x, (int, float)) or isinstance(x, str):
    pass
# $ pylint a.py
# R:  1, 0: Consider merging these isinstance calls to isinstance(x, (float, int)) (consider-merging-isinstance)
# R:  3, 0: Consider merging these isinstance calls to isinstance(x, (int, float, str)) (consider-merging-isinstance)







	A new error check was added, invalid-metaclass, which is used whenever pylint
can detect that a given class is using a metaclass which is invalid for the purpose
of the class. This usually might indicate a problem in the code, rather than
something done on purpose.

# Needs to inherit from *type* in order to be valid
class SomeClass(object):
    ...

class MyClass(metaclass=SomeClass):
    pass







	A new warning was added, useless-super-delegation, which is used whenever
we can detect that an overridden method is useless, relying on super() delegation
to do the same thing as another method from the MRO.

For instance, in this example, the first two methods are useless, since they
do the exact same thing as the methods from the base classes, while the next
two methods are not, since they do some extra operations with the passed
arguments.

class Impl(Base):

    def __init__(self, param1, param2):
        super(Impl, self).__init__(param1, param2)

    def useless(self, first, second):
        return super(Impl, self).useless(first, second)

    def not_useless(self, first, **kwargs):
        debug = kwargs.pop('debug', False)
        if debug:
            ...
        return super(Impl, self).not_useless(first, **kwargs)

    def not_useless_1(self, first, *args):
        return super(Impl, self).not_useless_1(first + some_value, *args)







	A new warning was added, len-as-condition, which is used whenever
we detect that a condition uses len(SEQUENCE) incorrectly. Instead
one could use if SEQUENCE or if not SEQUENCE.

For instance, all of the examples below:

if len(S):
  pass

if not len(S):
  pass

if len(S) > 0:
  pass

if len(S) != 0:
  pass

if len(S) == 0:
  pass





can be written in a more natural way:

if S:
  pass

if not S:
  pass





See https://www.python.org/dev/peps/pep-0008/#programming-recommendations
for more information.



	A new extension was added, emptystring.py which detects whenever
we detect comparisons to empty string constants. This extension is disabled
by default. For instance, the examples below:

if S != "":
  pass

if S == '':
  pass





can be written in a more natural way:

if S:
  pass

if not S:
  pass





An exception to this is when empty string is an allowed value whose meaning
is treated differently than None. For example the meaning could be
user selected no additional options vs. user has not made their selection yet!

You can activate this checker by adding the line:

load-plugins=pylint.extensions.emptystring





to the MASTER section of your .pylintrc or using the command:

$ pylint a.py --load-plugins=pylint.extensions.emptystring







	A new extension was added, comparetozero.py which detects whenever
we compare integers to zero. This extension is disabled by default.
For instance, the examples below:

if X != 0:
  pass

if X == 0:
  pass





can be written in a more natural way:

if X:
  pass

if not X:
  pass





An exception to this is when zero is an allowed value whose meaning
is treated differently than None. For example the meaning could be
None means no limit, while 0 means the limit it zero!

You can activate this checker by adding the line:

load-plugins=pylint.extensions.comparetozero





to the MASTER section of your .pylintrc or using the command:

$ pylint a.py --load-plugins=pylint.extensions.comparetozero







	We've added new error conditions for bad-super-call which now detect
the usage of super(type(self), self) and super(self.__class__, self)
patterns. These can lead to recursion loop in derived classes. The problem
is visible only if you override a class that uses these incorrect invocations
of super().

For instance, Derived.__init__() will correctly call Base.__init__.
At this point type(self) will be equal to Derived and the call again
goes to Base.__init__ and we enter a recursion loop.

class Base(object):
    def __init__(self, param1, param2):
        super(type(self), self).__init__(param1, param2)

class Derived(Base):
    def __init__(self, param1, param2):
        super(Derived, self).__init__(param1, param2)







	The warnings missing-returns-doc and missing-yields-doc have each
been replaced with two new warnings - missing-[return|yield]-doc and
missing-[return|yield]-type-doc. Having these as separate warnings
allows the user to choose whether their documentation style requires
text descriptions of function return/yield, specification of return/yield
types, or both.

# This will raise missing-return-type-doc but not missing-return-doc
def my_sphinx_style_func(self):
    """This is a Sphinx-style docstring.

    :returns: Always False
    """
    return False

# This will raise missing-return-doc but not missing-return-type-doc
def my_google_style_func(self):
    """This is a Google-style docstring.

    Returns:
        bool:
    """
    return False







	A new refactoring check was added, redefined-argument-from-local, which is
emitted when pylint can detect than a function argument is redefined locally
in some potential error prone cases. For instance, in the following piece of code,
we have a bug, since the check will never return True, given the fact that we
are comparing the same object to its attributes.

def test(resource):
    for resource in resources:
        # The ``for`` is reusing ``resource``, which means that the following
        # ``resource`` is not what we wanted to check against.
        if resource.resource_type == resource:
           call_resource(resource)





Other places where this check looks are with statement name bindings and
except handler's name binding.



	A new refactoring check was added, no-else-return, which is
emitted when pylint encounters an else following a chain of ifs,
all of them containing a return statement.

def foo1(x, y, z):
    if x:
        return y
    else:  # This is unnecessary here.
        return z





We could fix it deleting the else statement.

def foo1(x, y, z):
    if x:
        return y
    return z







	A new Python 3 check was added, eq-without-hash, which enforces classes that implement
__eq__ also implement __hash__.  The behavior around classes which implement __eq__
but not __hash__ changed in Python 3; in Python 2 such classes would get object.__hash__
as their default implementation.  In Python 3, aforementioned classes get None as their
implementation thus making them unhashable.

class JustEq(object):
   def __init__(self, x):
     self.x = x

   def __eq__(self, other):
     return self.x == other.x

class Neither(object):
  def __init__(self, x):
    self.x = x

class HashAndEq(object):
   def __init__(self, x):
     self.x = x

   def __eq__(self, other):
     return self.x == other.x

   def __hash__(self):
     return hash(self.x)

{Neither(1), Neither(2)}  # OK in Python 2 and Python 3
{HashAndEq(1), HashAndEq(2)}  # OK in Python 2 and Python 3
{JustEq(1), JustEq(2)}  # Works in Python 2, throws in Python 3





In general, this is a poor practice which motivated the behavior change.

as_set = {JustEq(1), JustEq(2)}
print(JustEq(1) in as_set)  # prints False
print(JustEq(1) in list(as_set))  # prints True





In order to fix this error and avoid behavior differences between Python 2 and Python 3, classes
should either explicitly set __hash__ to None or implement a hashing function.

class JustEq(object):
   def __init__(self, x):
     self.x = x

   def __eq__(self, other):
     return self.x == other.x

   __hash__ = None

{JustEq(1), JustEq(2)}  # Now throws an exception in both Python 2 and Python 3.







	3 new Python 3 checkers were added, div-method, idiv-method and rdiv-method.
The magic methods __div__ and __idiv__ have been phased out in Python 3 in favor
of __truediv__.  Classes implementing __div__ that still need to be used from Python
2 code not using from __future__ import division should implement __truediv__ and
alias __div__ to that implementation.

from __future__ import division

class DivisibleThing(object):
   def __init__(self, x):
     self.x = x

   def __truediv__(self, other):
     return DivisibleThing(self.x / other.x)

   __div__ = __truediv__







	A new Python 3 checker was added to warn about accessing the message attribute on
Exceptions.  The message attribute was deprecated in Python 2.7 and was removed in Python 3.
See https://www.python.org/dev/peps/pep-0352/#retracted-ideas for more information.

try:
  raise Exception("Oh No!!")
except Exception as e:
  print(e.message)





Instead of relying on the message attribute, you should explicitly cast the exception to a
string:

try:
  raise Exception("Oh No!!")
except Exception as e:
  print(str(e))







	A new Python 3 checker was added to warn about using encode or decode on strings
with non-text codecs.  This check also checks calls to open with the keyword argument
encoding.  See https://docs.python.org/3/whatsnew/3.4.html#improvements-to-codec-handling
for more information.

'hello world'.encode('hex')





Instead of using the encode method for non-text codecs use the codecs module.

import codecs
codecs.encode('hello world', 'hex')







	A new warning was added, overlapping-except, which is emitted
when an except handler treats two exceptions which are overlapping.
This means that one exception is an ancestor of the other one or it is
just an alias.

For example, in Python 3.3+, IOError is an alias for OSError. In addition, socket.error is
an alias for OSError. The intention is to find cases like the following:

import socket
try:
    pass
except (ConnectionError, IOError, OSError, socket.error):
    pass







	A new Python 3 checker was added to warn about accessing sys.maxint.  This attribute was
removed in Python 3 in favor of sys.maxsize.

import sys
print(sys.maxint)





Instead of using sys.maxint, use sys.maxsize

import sys
print(sys.maxsize)







	A new Python 3 checker was added to warn about importing modules that have either moved or been
removed from the standard library.

One of the major undertakings with Python 3 was a reorganization of the standard library to
remove old or supplanted modules and reorganize some of the existing modules.  As a result,
roughly 100 modules that exist in Python 2 no longer exist in Python 3.  See
https://www.python.org/dev/peps/pep-3108/ and https://www.python.org/dev/peps/pep-0004/ for more
information.  For suggestions on how to handle this, see
https://pythonhosted.org/six/#module-six.moves or http://python3porting.com/stdlib.html.

from cStringIO import StringIO





Instead of directly importing the deprecated module, either use six.moves or a conditional
import.

from six.moves import cStringIO as StringIO

if sys.version_info[0] >= 3:
    from io import StringIO
else:
    from cStringIO import StringIO





This checker will assume any imports that happen within a conditional or a try/except block
are valid.



	A new Python 3 checker was added to warn about accessing deprecated functions on the string
module.  Python 3 removed functions that were duplicated from the builtin str class.  See
https://docs.python.org/2/library/string.html#deprecated-string-functions for more information.

import string
print(string.upper('hello world!'))





Instead of using string.upper, call the upper method directly on the string object.

"hello world!".upper()







	A new Python 3 checker was added to warn about calling str.translate with the removed
deletechars parameter.  str.translate is frequently used as a way to remove characters
from a string.

'hello world'.translate(None, 'low')





Unfortunately, there is not an idiomatic way of writing this call in a 2and3 compatible way.  If
this code is not in the critical path for your application and the use of translate was a
premature optimization, consider using re.sub instead:

import re
chars_to_remove = re.compile('[low]')
chars_to_remove.sub('', 'hello world')





If this code is in your critical path and must be as fast as possible, consider declaring a
helper method that varies based upon Python version.

if six.PY3:
    def _remove_characters(text, deletechars):
        return text.translate({ord(x): None for x in deletechars})
else:
    def _remove_characters(text, deletechars):
        return text.translate(None, deletechars)







	A new refactoring check was added, consider-using-ternary, which is
emitted when pylint encounters constructs which were used to emulate
ternary statement before it was introduced in Python 2.5.

value = condition and truth_value or false_value





Warning can be fixed by using standard ternary construct:

value = truth_value if condition else false_value







	A new refactoring check was added, trailing-comma-tuple, which is emitted
when pylint finds an one-element tuple, created by a stray comma. This can
suggest a potential problem in the code and it is recommended to use parantheses
in order to emphasise the creation of a tuple, rather than relying on the comma
itself.

The warning is emitted for such a construct:

a = 1,





The warning can be fixed by adding parantheses:

a = (1, )







	Two new check were added for detecting an unsupported operation
over an instance, unsupported-assignment-operation and unsupported-delete-operation.
The first one is emitted whenever an object does not support item assignment, while
the second is emitted when an object does not support item deletion:

class A:
    pass
instance = A()
instance[4] = 4 # unsupported-assignment-operation
del instance[4] # unsupported-delete-operation







	A new check was added, relative-beyond-top-level, which is emitted
when a relative import tries to access too many levels in the current package.


	A new check was added, trailing-newlines, which is emitted when a file
has trailing new lines.


	invalid-length-returned check was added, which is emitted when a __len__
implementation does not return a non-negative integer.


	There is a new extension, pylint.extensions.mccabe, which can be used for
computing the McCabe complexity of classes and functions.

You can enable this extension through --load-plugins=pylint.extensions.mccabe



	A new check was added, used-prior-global-declaration. This is emitted when
a name is used prior a global declaration, resulting in a SyntaxError in Python 3.6.


	A new message was added, assign-to-new-keyword. This is emitted when used name
is known to become a keyword in future Python release. Assignments to keywords
would result in SyntaxError after switching to newer interpreter version.

# While it's correct in Python 2.x, it raises a SyntaxError in Python 3.x
True = 1
False = 0

# Same as above, but it'll be a SyntaxError starting from Python 3.7
async = "async"
await = "await












Other Changes


	We don't emit by default no-member if we have opaque inference objects in the inference results

This is controlled through the new flag --ignore-on-opaque-inference, which is by
default True. The inference can return  multiple potential results while
evaluating a Python object, but some branches might not be evaluated, which
results in partial inference. In that case, it might be useful to still emit
no-member and other checks for the rest of the inferred objects.



	Namespace packages are now supported by pylint. This includes both explicit namespace
packages and implicit namespace packages, supported in Python 3 through PEP 420.


	A new option was added, --analyse-fallback-block.

This can be used to support both Python 2 and 3 compatible import block code,
which means that the import block might have code that exists only in one or another
interpreter, leading to false positives when analysed. By default, this is false, you
can enable the analysis for both branches using this flag.



	ignored-argument-names option is now used for ignoring arguments
for unused-variable check.

This option was used for ignoring arguments when computing the correct number of arguments
a function should have, but for handling the arguments with regard
to unused-variable check, dummy-variables-rgx was used instead. Now, ignored-argument-names
is used for its original purpose and also for ignoring the matched arguments for
the unused-variable check. This offers a better control of what should be ignored
and how.
Also, the same option was moved from the design checker to the variables checker,
which means that the option now appears under the [VARIABLES] section inside
the configuration file.



	A new option was added, redefining-builtins-modules, for controlling the modules
which can redefine builtins, such as six.moves and future.builtins.


	A new option was added, ignore-patterns, which is used for building a
blacklist of directories and files matching the regex patterns, similar to the
ignore option.


	The reports are now disabled by default, as well as the information category
warnings.


	arguments-differ check was rewritten to take in consideration
keyword only parameters and variadics.

Now it also complains about losing or adding capabilities to a method,
by introducing positional or keyword variadics. For instance, pylint
now complains about these cases:

class Parent(object):

    def foo(self, first, second):
        ...

    def bar(self, **kwargs):
        ...

    def baz(self, *, first):
        ...

class Child(Parent):

    # Why subclassing in the first place?
    def foo(self, *args, **kwargs):
        # mutate args or kwargs.
        super(Child, self).foo(*args, **kwargs)

    def bar(self, first=None, second=None, **kwargs):
        # The overridden method adds two new parameters,
        # which can also be passed as positional arguments,
        # breaking the contract of the parent's method.

    def baz(self, first):
        # Not keyword-only







	redefined-outer-name is now also emitted when a
nested loop's target variable is the same as an outer loop.

for i, j in [(1, 2), (3, 4)]:
    for j in range(i):
        print(j)







	relax character limit for method and function names that starts with _.
This will let people to use longer descriptive names for methods and
functions with a shorter scope (considered as private). The same idea
applies to variable names, only with an inverse rule: you want long
descriptive names for variables with bigger scope, like globals.


	Add InvalidMessageError exception class and replace assert in
pylint.utils with raise InvalidMessageError.


	UnknownMessageError (formerly UnknownMessage) and
EmptyReportError (formerly EmptyReport) are now provided by the new
pylint.exceptions submodule instead of pylint.utils as before.


	We now support inline comments for comma separated values in the configurations

For instance, you can now use the # sign for having comments inside
comma separated values, as seen below:

disable=no-member, # Don't care about it for now
        bad-indentation, # No need for this
        import-error





Of course, interweaving comments with values is also working:

disable=no-member,
        # Don't care about it for now
        bad-indentation # No need for this





This works by setting the inline comment prefixes [https://docs.python.org/3/library/configparser.html#customizing-parser-behaviour] accordingly.



	Added epytext docstring support to the docparams extension.


	We added support for providing hints when not finding a missing member.

For example, given the following code, it should be obvious that
the programmer intended to use the mail attribute, rather than
email.

class Contribution:
    def __init__(self, name, email, date):
        self.name = name
        self.mail = mail
        self.date = date

for c in contributions:
    print(c.email) # Oups





pylint will now warn that there is a chance of having a typo,
suggesting new names that could be used instead.

$ pylint a.py
E: 8,10: Instance of 'Contribution' has no 'email' member; maybe 'mail'?





The behaviour is controlled through the --missing-member-hint option.
Other options that come with this change are --missing-member-max-choices
for choosing the total number of choices that should be picked in this
situation and --missing-member-hint-distance, which specifies a metric
for computing the distance between the names (this is based on Levenshtein
distance, which means the lower the number, the more pickier the algorithm
will be).



	PyLinter.should_analyze_file has a new parameter, is_argument,
which specifies if the given path is a pylint argument or not.

should_analyze_file is called whenever pylint tries to determine
if a file should be analyzed, defaulting to files with the .py
extension, but this function gets called only in the case where the said
file is not passed as a command line argument to pylint. This usually
means that pylint will analyze a file, even if that file has a different
extension, as long as the file was explicitly passed at command line.
Since should_analyze_file cannot be overridden to handle all the cases,
the check for the provenience of files was moved into should_analyze_file.
This means we now can write something similar with this example, for ignoring
every file respecting the desired property, disregarding the provenience of the
file, being it a file passed as CLI argument or part of a package.

from pylint.lint import Run, PyLinter

class CustomPyLinter(PyLinter):

     def should_analyze_file(self, modname, path, is_argument=False):
         if respect_condition(path):
             return False
         return super().should_analyze_file(modname, path, is_argument=is_argument)


class CustomRun(Run):
     LinterClass = CustomPyLinter

CustomRun(sys.argv[1:])







	Imports aliased with underscore are skipped when checking for unused imports.


	bad-builtin and redefined-variable-type are now extensions,
being disabled by default. They can be enabled through:
--load-plugins=pylint.extensions.redefined_variable_type,pylint.extensions.bad_builtin


	Imports checker supports new switch allow-wildcard-with-all which disables
warning on wildcard import when imported module defines __all__ variable.






	differing-param-doc is now used for the differing part of the old missing-param-doc,
and differing-type-doc for the differing part of the old missing-type-doc.







Bug fixes


	Fix a false positive of redundant-returns-doc, occurred when the documented
function was using yield instead of return.


	Fix a false positive of missing-param-doc and missing-type-doc,
occurred when a class docstring uses the For the parameters, see
magic string but the class __init__ docstring does not, or vice versa.


	Added proper exception type inference for missing-raises-doc. Now:

def my_func():
    """"My function."""
    ex = ValueError('foo')
    raise ex





will properly be flagged for missing documentation of
:raises ValueError: instead of :raises ex:, among other scenarios.



	Fix false positives of missing-[raises|params|type]-doc due to not
recognizing valid keyword synonyms supported by Sphinx.


	More thorough validation in MessagesStore.register_messages() to detect
conflicts between a new message and any existing message id, symbol,
or old_names.


	We now support having plugins that shares the same name and with each one
providing options.

A plugin can be logically split into multiple classes, each class providing
certain capabilities, all of them being tied under the same name. But when
two or more such classes are also adding options, then pylint crashed,
since it already added the first encountered section. Now, these should
work as expected.

from pylint.checkers import BaseChecker


class DummyPlugin1(BaseChecker):
    name = 'dummy_plugin'
    msgs = {'I9061': ('Dummy short desc 01', 'dummy-message-01', 'Dummy long desc')}
    options = (
        ('dummy_option_1', {
            'type': 'string',
            'metavar': '<string>',
            'help': 'Dummy option 1',
        }),
    )


class DummyPlugin2(BaseChecker):
    name = 'dummy_plugin'
    msgs = {'I9060': ('Dummy short desc 02', 'dummy-message-02', 'Dummy long desc')}
    options = (
        ('dummy_option_2', {
            'type': 'string',
            'metavar': '<string>',
            'help': 'Dummy option 2',
        }),
    )


def register(linter):
    linter.register_checker(DummyPlugin1(linter))
    linter.register_checker(DummyPlugin2(linter))







	We do not yield unused-argument for singledispatch implementations and
do not warn about function-redefined for multiple implementations with same name.

from functools import singledispatch

@singledispatch
def f(x):
    return 2*x

@f.register(str)
def _(x):
    return -1

@f.register(int)
@f.register(float)
def _(x):
    return -x







	unused-variable checker has new functionality of warning about unused
variables in global module namespace. Since globals in module namespace
may be a part of exposed API, this check is disabled by default. For
enabling it, set allow-global-unused-variables option to false.


	Fix a false-positive logging-format-interpolation message, when format
specifications are used in formatted string. In general, these operations
are not always convertible to old-style formatting used by logging module.


	Added a new switch single-line-class-stmt to allow single-line declaration
of empty class bodies (as seen in the example below). Pylint won't emit a
multiple-statements message when this option is enabled.

class MyError(Exception): pass






	too-many-format-args and too-few-format-args are emitted correctly
(or not emitted at all, when exact count of elements in RHS cannot be
inferred) when starred expressions are used in RHS tuple. For example,
code block as shown below detects correctly that the used tuple has in
fact three elements, not two.




meat = ['spam', 'ham']
print('%s%s%s' % ('eggs', *meat))







	cyclic-import checker supports local disable clauses. When one
of cycle imports was done in scope where disable clause was active,
cycle is not reported as violation.







Removed Changes


	pylint-gui was removed, because it was deemed unfit for being included
in pylint. It had a couple of bugs and misfeatures, its usability was subpar
and since its development was neglected, we decided it is best to move on without it.


	The HTML reporter was removed, including the --output-format=html option.
It was lately a second class citizen in Pylint, being mostly neglected.
Since we now have the JSON reporter, it can be used as a basis for building
more prettier HTML reports than what Pylint can currently generate. This is
part of the effort of removing cruft from Pylint, by removing less used
features.


	The --files-output option was removed. While the same functionality cannot
be easily replicated, the JSON reporter, for instance, can be used as a basis
for generating the messages per each file.


	--required-attributes option was removed.


	--ignore-iface-methods option was removed.


	The --optimize-ast flag was removed.

The option was initially added for handling pathological cases,
such as joining too many strings using the addition operator, which
was leading pylint to have a recursion error when trying to figure
out what the string was. Unfortunately, we decided to ignore the
issue, since the pathological case would have happen when the
code was parsed by Python as well, without actually reaching the
runtime step and as such, we decided to remove the error altogether.



	epylint.py_run's script parameter was removed.

Now epylint.py_run is always using the underlying epylint.lint
method from the current interpreter. This avoids some issues when multiple
instances of pylint are installed, which means that epylint.py_run
might have ran a different epylint script than what was intended.











          

      

      

    

  

    
      
          
            
  
What's New In Pylint 1.6


	Release

	1.6.0



	Date

	2016-07-07






Summary -- Release highlights

Nothing major.




New checkers


	We added a new recommendation check, consider-iterating-dictionary,
which is emitted when a dictionary is iterated by using .keys().

For instance, the following code would trigger this warning, since
the dictionary's keys can be iterated without calling the method explicitly.

for key in dictionary.keys():
    ...

# Can be refactored to:
for key in dictionary:
    ...







	trailing-newlines check was added, which is emitted when a file has trailing newlines.


	invalid-length-returned check was added, which is emitted when the __len__
special method returns something else than a non-negative number. For instance, this
example is triggering it:

class Container(object):
    def __len__(self):
        return self._items # Oups, forgot to call len() over it.







	Add a new check to the check_docs extension for looking for duplicate
constructor parameters in a class constructor docstring or in a class docstring.

The check multiple-constructor-doc is emitted when the parameter is documented
in both places.



	We added a new extension plugin, pylint.extensions.mccabe, which can be used
for warning about the complexity in the code.

You can enable it as in:

$ pylint module_or_project --load-plugins=pylint.extensions.mccabe





See more at Design checker








New features


	generated-members now supports qualified names through regular expressions.

For instance, for ignoring all the errors generated by numpy.core's attributes, we can
now use:

$ pylint a.py --generated-members=numpy.*







	Add the ability to ignore files based on regex matching, with the new --ignore-patterns option.

Rather than clobber the existing ignore option, we decided to have a separate
option for it. For instance, for ignoring all the test files, we can now use:

$ pylint myproject --ignore-patterns=test.*?py







	We added a new option, redefining-builtins-modules, which is used for
defining the modules which can redefine builtins.
pylint will emit an error when a builtin is redefined, such as defining
a variable called next. But in some cases, the builtins can be
redefined in the case they are imported from other places, different
than the builtins module, such is the case for six.moves, which
contains more forward-looking functions:

$ cat a.py
# Oups, now pylint emits a redefined-builtin message.
from six.moves import open
$ pylint a.py --redefining-builtins-modules=six.moves





Default values: six.moves,future.builtins








Bug fixes


	Fixed a bug where the top name of a qualified import was detected as an unused variable.


	We don't warn about invalid-sequence-index if the indexed object has unknown
base classes, that Pylint cannot deduce.







Other Changes


	The bad-builtin check was moved into an extension.

The check was complaining about used builtin functions which
were supposed to not be used. For instance, map and filter
were falling into this category, since better alternatives can
be used, such as list comprehensions. But the check was annoying,
since using map or filter can have its use cases and as
such, we decided to move it to an extension check instead.
It can now be enabled through --load-plugins=pylint.extensions.bad_builtin.



	We use the configparser backport internally, for Python 2.

This allows having comments inside list values, in the configuration,
such as:

disable=no-member,
        # Don't like this check
        bad-indentation







	We now use the isort [https://pypi.python.org/pypi/isort] package internally.

This improves the `wrong-import-order check, so now
we should have less false positives regarding the import order.



	We do not emit import-error or no-name-in-module for fallback import blocks by default.

A fallback import block can be considered a TryExcept block, which contains imports in both
branches, such as:

try:
    import urllib.request as request
except ImportError:
    import urllib2 as request





In the case where pylint can not find one import from the except branch, then
it will emit an import-error, but this gets cumbersome when trying to write
compatible code for both Python versions. As such, we don't check these blocks by default,
but the analysis can be enforced by using the new --analyse-fallback-block flag.



	reimported is emitted when the same name is imported from different module, as in:

from collections import deque, OrderedDict, deque












Deprecated features


	The HTML support was deprecated and will be eventually removed
in Pylint 1.7.0.

This feature was lately a second class citizen in Pylint, being
often neglected and having a couple of bugs. Since we now have
the JSON reporter, this can be used as a basis for more prettier
HTML outputs than what Pylint can currently offer.



	The --files-output option was deprecated and will be eventually
removed in Pylint 1.7.0.


	The --optimize-ast option was deprecated and will be eventually
removed in Pylint 1.7.0.

The option was initially added for handling pathological cases,
such as joining too many strings using the addition operator, which
was leading pylint to have a recursion error when trying to figure
out what the string was. Unfortunately, we decided to ignore the
issue, since the pathological case would have happen when the
code was parsed by Python as well, without actually reaching the
runtime step and as such, we will remove the option in the future.



	The check_docs extension is now deprecated. The extension is still available
under the docparams name, so this should work:

$ pylint module_or_package --load-extensions=pylint.extensions.docparams





The old name is still kept for backward compatibility, but it will be
eventually removed.








Removed features


	None yet










          

      

      

    

  

    
      
          
            
  
Pylint's ChangeLog


What's New in Pylint 2.3.1?

Release date: 2019-03-02


	Properly pass quote=False to html.escape in the JSON reporter

Close #2769








What's New in Pylint 2.3.0?

Release date: 2019-02-27


	Protect against NonDeducibleTypeHierarchy when calling semi-private is_subtype

astroid.helpers.is_subtype raises NonDeducibleTypeHierarchy when it cannot infer
the base classes of the given types, but that makes sense in its context given that
the method is mostly used to inform the inference process about the hierarchy of classes.
Doesn't make that much sense for pylint itself, which is why we're handling the
exception here, rather than in astroid

Close PyCQA/astroid#644



	Added a new command line option list-groups for listing all the check groups pylint knows about.


	Allow BaseException for emitting broad-except, just like Exception.

Close #2741



	Fixed a crash that occurred for bad-str-strip-call when strip() received None

Close #2743



	Don't emit *-not-iterating checks for builtins consumed by itertools

Close #2731



	Fix a crash caused by iterating over Uninferable in a string formatting check.

Close #2727



	Fixed false positives for no-self-argument and unsubscriptable-object when using __class_getitem__ (new in Python 3.7)

Close #2416



	Support Ellipsis as a synonym for pass statements.

Close #2718



	fixme gets triggered only on comments.

Close #2321



	Fixed a false positive for unused-variable and nonlocal assignments

Close #2671



	Added load_configuration() hook for plugins

New optional hook for plugins is added: load_configuration().
This hook is executed after configuration is loaded to prevent
overwriting plugin specific configuration via user-based
configuration.

Close #2635



	Fix missing-raises-doc false positive (W9006)

Close #1502



	Exempt starred unpacking from *-not-iterating Python 3 checks

Close #2651



	Make compare-to-zero less zealous by checking against equality and identity

Close #2645



	Add no-else-raise warning (R1720)

Close #2558



	Exempt yield from from *-not-iterating Python 3 checks.

Close #2643



	Fix incorrect generation of no-else-return warnings (R1705)

Fixed issue where if statements with nested if statements
were incorrectly being flagged as no-else-return in some cases and
not being flagged as no-else-return in other cases.  Added tests
for verification and updated pylint source files to eliminate newly
exposed warnings.



	Fix false positive with not-async-context-manager caused by not understanding contextlib.asynccontextmanager

Close #2440



	Refactor bad-reversed-sequence to account for more objects that can define __reversed__

One such object would be an enum class, for which __reversed__ yields each individual enum.
As such, the check for bad-reversed-sequence needs to not differentiate between classes
and instances when it comes for checking of __reversed__ presence.

Close #2598



	Added wrong-exception-operation

Used when an operation is done against an exception, but the operation
is not valid for the exception in question. Usually emitted when having
binary operations between exceptions in except handlers.

Close #2494



	no-member is emitted for enums when they lack a member

Previously we weren't doing this because we detected a
__getattr__ implementation on the Enum class
(and this check is skipped for classes with __getattr__),
but that is fine for Enums, given that they are inferred in a customised
way in astroid.

Close #2565



	Generalize chained-comparison

Previous version incorrectly detects a < b < c and b < d and fails to
detect a < b < c and c < d.



	Avoid popping __main__ when using multiple jobs

Close #2689



	Add a new option 'check-str-concat-over-line-jumps' to check 'implicit-str-concat-in-sequence'


	Fixes for the new style logging format linter.

The number of arguments was not handled properly, leading to an always
successful check.



	Fix false positive not-callable for uninferable properties.


	Fix false positive useless-else-on-loop if the break is deep in the else
of an inner loop.







What's New in Pylint 2.2.2?

Release date: 2018-11-28


	Change the logging-format-style to use name identifier instead of their
corresponding Python identifiers

This is to prevent users having to think about escaping the default value for
logging-format-style in the generated config file. Also our config parsing
utilities don't quite support escaped values when it comes to choices detection,
so this would have needed various hacks around that.

Closes #2614








What's New in Pylint 2.2.1?

Release date: 2018-11-27


	Fix a crash caused by implicit-str-concat-in-sequence and multi-bytes characters.

Closes #2610








What's New in Pylint 2.2?

Release date: 2018-11-25



	Consider range() objects for undefined-loop-variable leaking from iteration.

Close #2533



	deprecated-method can use the attribute name for identifying a deprecated method

Previously we were using the fully qualified name, which we still do, but the fully
qualified name for some unittest deprecated aliases leads to a generic
deprecation function. Instead on relying on that, we now also rely on the attribute
name, which should solve some false positives.

Close #1653
Close #1946



	Fix compatibility with changes to stdlib tokenizer.


	pylint is less eager to consume the whole line for pragmas

Close #2485



	Obtain the correct number of CPUs for virtualized or containerized environments.

Close #2519



	Change unbalanced-tuple-unpacking back to a warning.

It used to be a warning until a couple of years ago, after it was promoted to
an error. But the check might be suggesting the wrong thing in some cases,
for instance when checking against sys.argv which cannot be known at static
analysis time. Given it might rely on potential unknown data, it's best to
have it as a warning.

Close #2522



	Remove enumerate usage suggestion when defining __iter__ (C0200)

Close #2477



	Emit too-many-starred-assignment only when the number of Starred nodes is per assignment elements

Close #2513



	try-except-raise checker now handles multilevel inheritance hirerachy for exceptions correctly.

Close #2484



	Add a new check, simplifiable-if-expression for expressions like True if cond else False.

Close #2487



	too-few-public-methods is not reported for typing.NamedTuple

Close #2459



	`too-few-public-methods is not reported for dataclasses created with options.

Close #2488



	Remove wrong modules from 'bad-python3-import'.

Close #2453



	The json reporter prints an empty list when no messages are emitted

Close #2446



	Add a new check, duplicate-string-formatting-argument

This new check is emitted whenever a duplicate string formatting argument
is found.

Close #497



	assignment-from-no-return is not emitted for coroutines.

Close #1715



	Report format string type mismatches.


	consider-using-ternary and simplified-boolean-expression no longer emit for sequence based checks

Close #2473



	Handle AstroidSyntaxError when trying to import a module.

Close #2313



	Allow __module__ to be redefined at a class level. Close #2451


	pylint used to emit a unused-variable error if unused import was found in the function. Now instead of
unused-variable, unused-import is emitted.

Close #2421



	Handle asyncio.coroutine when looking for not-an-iterable check.

Close #996



	The locally-enabled check is gone.

Close #2442



	Infer decorated methods when looking for method-hidden

Close #2369



	Pick the latest value from the inferred values when looking for raising-non-exception

Close #2431



	Extend the TYPE_CHECKING guard to TYPE_CHECKING name as well, not just the attribute

Close #2411



	Ignore import x.y.z as z cases for checker useless-import-alias.

Close #2309



	Fix false positive undefined-variable and used-before-assignment with nonlocal keyword usage.

Close #2049



	Stop protected-access exception for missing class attributes


	Don't emit assignment-from-no-return for decorated function nodes

Close #2385



	unnecessary-pass is now also emitted when a function or class contains only docstring and pass statement.


In Python, stubbed functions often have a body that contains just a single pass statement,
indicating that the function doesn't do anything. However, a stubbed function can also have just a
docstring, and function with a docstring and no body also does nothing.

Close #2208






	duplicate-argument-name is emitted for more than one duplicate argument per function


Close #1712






	Allow double indentation levels for more distinguishable indentations

Close #741



	Consider tuples in exception handler for try-except-raise.
Close #2389


	Fix astroid.ClassDef check in checkers.utils.is_subclass_of


	Fix wildcard imports being ignored by the import checker


	Fix external/internal distinction being broken in the import graph


	Fix wildcard import check not skipping __init__.py

Close #2430



	Add new option to logging checker, logging_format_style


	Fix --ignore-imports to understand multi-line imports

Close #1422
Close #2019



	Add a new check 'implicit-str-concat-in-sequence' to spot string concatenation inside lists, sets & tuples.


	literal-comparison is now emitted for 0 and 1 literals.










What's New in Pylint 2.1.1?

Release date: 2018-08-07



	fix pylint crash due to misplaced-format-function not correctly handling class attribute.
Close #2384


	Do not emit *-builtin for Python 3 builtin checks when the builtin is used inside a try-except

Close PyCQA/pylint#2228



	simplifiable-if-statement not emitted when dealing with subscripts










What's New in Pylint 2.1?


	Release date: 2018-08-01

	
	trailing-comma-tuple gets emitted for yield statements as well.


Close #2363






	Get only the arguments of the scope function for redefined-argument-from-local

Close #2364



	Add a check misplaced-format-function which is emitted if format function is used on
non str object.

Close #2200



	chain.from_iterable no longer emits dict-{}-not-iterating when dealing with dict values and keys


	Demote the try-except-raise message from an error to a warning (E0705 -> W0706)


Close #2323






	Correctly handle the new name of the Python implementation of the abc module.

Close PyCQA/astroid#2288







	Modules with __getattr__ are exempted by default from no-member

There's no easy way to figure out if a module has a particular member when
the said module uses __getattr__, which is a new addition to Python 3.7.
Instead we assume the safe thing to do, in the same way we do for classes,
and skip those modules from checking.

Close #2331



	Fix a false positive invalid name message when method or attribute name is longer then 30 characters.

Close #2047



	Include the type of the next branch in no-else-return

Close #2295



	Fix inconsistent behaviour for bad-continuation on first line of file

Close #2281







	Fix not being able to disable certain messages on the last line through
the global disable option

Close #2278









	Don't emit useless-return when we have a single statement that is the return itself

We still want to be explicit when a function is supposed to return
an optional value; even though pass could still work, it's not explicit
enough and the function might look like it's missing an implementation.
Close #2300









	Fix false-positive undefined-variable for self referential class name in lamdbas


Close #704










	Don't crash when pylint is unable to infer the value of an argument to next()

Close #2316



	Don't emit not-an-iterable when dealing with async iterators.

But do emit it when using the usual iteration protocol against
async iterators.

Close #2311









	Can specify a default docstring type for when the check cannot guess the type


Close #1169















What's New in Pylint 2.0?


	Release date: 2018-07-15

	
	try-except-raise should not be emitted if there are any parent exception class handlers.


Close #2284






	trailing-comma-tuple can be emitted for return statements as well.


Close #2269






	Fix a false positive inconsistent-return-statements message when exception is raised
inside an else statement.

Close #1782



	ImportFrom nodes correctly use the full name for the import sorting checks.

Close #2181



	[].extend and similar builtin operations don't emit dict-*-not-iterating with the Python 3 porting checker

Close #2187



	Add a check consider-using-dict-comprehension which is emitted if for dict initialization
the old style with list comprehensions is used.


	Add a check consider-using-set-comprehension which is emitted if for set initialization
the old style with list comprehensions is used.


	logging-not-lazy is emitted whenever pylint infers that a string is built with addition

Close #2193



	Add a check chained-comparison which is emitted if a boolean operation can be simplified
by chaining some of its operations.
e.g "a < b and b < c", can be simplified as "a < b < c".

Close #2032



	Add a check consider-using-in for comparisons of a variable against
multiple values with "==" and "or"s instead of checking if the variable
is contained "in" a tuple of those values.


	in is considered iterating context for some of the Python 3 porting checkers

Close #2186



	Add --ignore-none flag to control if pylint should warn about no-member where the owner is None


	Fix a false positive related to too-many-arguments and bounded __get__ methods

Close #2172



	mcs as the first parameter of metaclass's __new__ method was replaced by cls

Close #2028



	assignment-from-no-return considers methods as well.


Close #2081






	Support typing.TYPE_CHECKING for unused-import errors

Close #1948



	Inferred classes at a function level no longer emit invalid-name
when they don't respect the variable regular expression

Close #1049



	Added basic support for postponed evaluation of function annotations.

Close #2069



	Fix a bug with missing-kwoa and variadics parameters

Close #1111



	simplifiable-if-statement takes in account only when assigning to same targets


Close #1984






	Make len-as-condition test more cases, such as len() < 1 or len <= 0


	Fix false-positive line-too-long message emission for
commented line at the end of a module

Close #1950



	Fix false-positive bad-continuation for with statements

Close #461



	Don't warn about stop-iteration-return when using next() over itertools.count

Close #2158



	Add a check consider-using-get for unidiomatic usage of value/default-retrieval
for a key from a dictionary

Close #2076



	invalid-slice-index is not emitted when the slice is used as index for a complex object.

We only use a handful of known objects (list, set and friends) to figure out if
we should emit invalid-slice-index when the slice is used to subscript an object.



	Don't emit unused-import anymore for typing imports used in type comments.


	Add a new check 'useless-import-alias'.

Close #2052



	Add comparison-with-callable to warn for comparison with bare callable, without calling it.

Close #2082



	Don't warn for missing-type-doc and/or missing-return-type-doc, if type
annotations exist on the function signature for a parameter and/or return type.
Close #2083


	Add --exit-zero option for continuous integration scripts to more
easily call Pylint in environments that abort when a program returns a
non-zero (error) status code.

Close #2042



	Warn if the first argument of an instance/ class method gets assigned

Close #977



	New check comparison-with-itself to check comparison between same value.

Close #2051



	Add a new warning, 'logging-fstring-interpolation', emitted when f-string
is used within logging function calls.

Close #1998



	Don't show 'useless-super-delegation' if the subclass method has different type annotations.

Close #1923



	Add unhashable-dict-key check.

Closes #586



	Don't warn that a global variable is unused if it is defined by an import

Close #1453



	Skip wildcard import check for __init__.py.

Close #2026



	The Python 3 porting mode can now run with Python 3 as well.


	too-few-public-methods is not emitted for dataclasses.


Close #1793






	New verbose mode option, enabled with --verbose command line flag, to
display of extra non-checker-related output. It is disabled by default.

Close #1863



	undefined-loop-variable takes in consideration non-empty iterred objects before emitting

Close #2039



	Add support for numpydoc optional return value names.

Close #2030



	singleton-comparison accounts for negative checks

Close #2037



	Add a check consider-using-in for comparisons of a variable against
multiple values with "==" and "or"s instead of checking if the variable
is contained "in" a tuple of those values.

Close #1977



	defaultdict and subclasses of dict are now handled for dict-iter-* checks

Close #2005



	logging-format-interpolation also emits when f-strings are used instead of % syntax.

Close #1788



	Don't trigger misplaced-bare-raise when the raise is in a finally clause

Close #1924



	Add a new check, possibly-unused-variable.

This is similar to unused-variable, the only difference is that it is
emitted when we detect a locals() call in the scope of the unused variable.
The locals() call could potentially use the said variable, by consuming
all values that are present up to the point of the call. This new check
allows to disable this error when the user intentionally uses locals()
to consume everything.

Close #1909.



	no-else-return accounts for multiple cases


The check was a bit overrestrictive because we were checking for
return nodes in the .orelse node. At that point though the if statement
can be refactored to not have the orelse. This improves the detection of
other cases, for instance it now detects TryExcept nodes that are part of
the .else branch.

Close #1852






	Added two new checks, invalid-envvar-value and invalid-envvar-default.

The former is trigger whenever pylint detects that environment variable manipulation
functions uses a different type than strings, while the latter is emitted whenever
the said functions are using a default variable of different type than expected.



	Add a check consider-using-join for concatenation of strings using str.join(sequence)

Close #1952



	Add a check consider-swap-variables for swapping variables with tuple unpacking

Close #1922



	Add new checker try-except-raise that warns the user if an except handler block
has a raise statement as its first operator. The warning is shown when there is
a bare raise statement, effectively re-raising the exception that was caught or the
type of the exception being raised is the same as the one being handled.


	Don't crash on invalid strings when checking for logging-format-interpolation

Close #1944



	Exempt __doc__ from triggering a redefined-builtin

__doc__ can be used to specify a docstring for a module without
passing it as a first-statement string.



	Fix false positive bad-whitespace from function arguments with default
values and annotations

Close #1831



	Fix stop-iteration-return false positive when next builtin has a
default value in a generator

Close #1830



	Fix emission of false positive no-member message for class with  "private" attributes whose name is mangled.

Close #1643



	Fixed a crash which occurred when Uninferable wasn't properly handled in stop-iteration-return

Close #1779



	Use the proper node to get the name for redefined functions (#1792)

Close #1774



	Don't crash when encountering bare raises while checking inconsistent returns

Close #1773



	Fix a false positive inconsistent-return-statements message when if statement is inside try/except.

Close #1770



	Fix a false positive inconsistent-return-statements message when while loop are used.

Close #1772



	Correct column number for whitespace conventions.

Previously the column was stuck at 0

Close #1649



	Fix unused-argument false positives with overshadowed variable in
dictionary comprehension.

Close #1731



	Fix false positive inconsistent-return-statements message when never
returning functions are used (i.e sys.exit for example).

Close #1771



	Fix error when checking if function is exception, as in bad-exception-context.


	Fix false positive inconsistent-return-statements message when a
function is defined under an if statement.

Close #1794



	New useless-return message when function or method ends with a "return" or
"return None" statement and this is the only return statement in the body.


	Fix false positive inconsistent-return-statements message by
avoiding useless exception inference if the exception is not handled.

Close #1794 (second part)



	Fix bad thread instantiation check when target function is provided in args.

Close #1840



	Fixed false positive when a numpy Attributes section follows a Parameters
section

Close #1867



	Fix incorrect file path when file absolute path contains multiple path_strip_prefix strings.

Close #1120



	Fix false positive undefined-variable for lambda argument in class definitions

Close #1824



	Add of a new checker that warns the user if some messages are enabled or disabled
by id instead of symbol.

Close #1599



	Suppress false-positive not-callable messages from certain
staticmethod descriptors

Close #1699



	Fix indentation handling with tabs

Close #1148



	Fix false-positive bad-continuation error

Close #638



	Fix false positive unused-variable in lambda default arguments

Close #1921
Close #1552
Close #1099
Close #210



	Updated the default report format to include paths that can be clicked on in some terminals (e.g. iTerm).


	Fix inline def behavior with too-many-statements checker

Close #1978



	Fix KeyError raised when using docparams and NotImplementedError is documented.

Close #2102



	Fix 'method-hidden' raised when assigning to a property or data descriptor.


	Fix emitting useless-super-delegation when changing the default value of keyword arguments.

Close #2022



	Expand ignored-argument-names include starred arguments and keyword arguments

Close #2214



	Fix false-postive undefined-variable in nested lambda

Close #760



	Fix false-positive bad-whitespace message for typing annoatations
with ellipses in them

Close 1992












What's New in Pylint 1.9?

Release date: 2018-05-15



	Added two new Python 3 porting checks, exception-escape and comprehension-escape

These two are emitted whenever pylint detects that a variable defined in the
said blocks is used outside of the given block. On Python 3 these values are deleted.



	Added a new deprecated-sys-function, emitted when accessing removed sys members.


	Added xreadlines-attribute, emitted when the xreadlines() attribute is accessed.


	The Python 3 porting mode can now run with Python 3 as well.


	docparams extension allows abstract methods to document what overriding
implementations should return, and to raise NotImplementedError without
documenting it.

Closes #2044



	Special methods do not count towards too-few-methods,
and are considered part of the public API.


	Enum classes do not trigger too-few-methods

Close #605



	Added a new Python 2/3 check for accessing operator.div, which is removed in Python 3

Close #1936



	Added a new Python 2/3 check for accessing removed urllib functions

Close #1997











What's New in Pylint 1.8.1?

Release date: 2017-12-15



	Wrong version number in __pkginfo__.










What's New in Pylint 1.8?

Release date: 2017-12-15



	Respect disable=... in config file when running with --py3k.


	New warning shallow-copy-environ added

Shallow copy of os.environ doesn't work as people may expect. os.environ
is not a dict object but rather a proxy object, so any changes made
on copy may have unexpected effects on os.environ

Instead of copy.copy(os.environ) method os.environ.copy() should be
used.

See https://bugs.python.org/issue15373 for details.

Close #1301



	Do not display no-absolute-import warning multiple times per file.


	
	trailing-comma-tuple refactor check now extends to assignment with

	more than one element (such as lists)





Close #1713



	Fixing u'' string in superfluous-parens message

Close #1420



	abstract-class-instantiated is now emitted for all inference paths.


Close #1673






	Add set of predefined naming style to ease configuration of checking
naming conventions.

Closes #1013



	Added a new check, keyword-arg-before-vararg

This is emitted for function definitions
in which keyword arguments are placed before variable
positional arguments (*args).

This may lead to args list getting modified if keyword argument's value
is not provided in the function call assuming it will take default value
provided in the definition.



	The invalid-name check contains the name of the template that caused the failure

Close #1176



	Using the -j flag won't start more child linters than needed.

Contributed by Roman Ivanov in #1614



	Fix a false positive with bad-python3-import on relative imports

Close #1608



	Added a new Python 3 check, non-ascii-bytes-literals

Close #1545



	Added a couple of new Python 3 checks for accessing dict methods in non-iterable context


	Protocol checks (not-a-mapping, not-an-iterable and co.) aren't emitted on classes with dynamic getattr


	Added a new warning, 'bad-thread-instantiation'

This message is emitted when the threading.Thread class does not
receive the target argument, but receives just one argument, which
is by default the group parameter.

Close #1327



	In non-quiet mode, absolute path of used config file is logged to
standard error.
Close #1519


	Raise meaningful exception for invalid reporter class being selected

When unknown reporter class will be selected as Pylint reporter,
meaningful error message would be raised instead of bare ImportError
or AttribueError related to module or reporter class being not found.
Close #1388



	Added a new Python 3 check for accessing removed functions from itertools
like izip or ifilterfalse


	Added a new Python 3 check for accessing removed fields from the types
module like UnicodeType or XRangeType


	Added a new Python 3 check for declaring a method next that would have
been treated as an iterator in Python 2 but a normal function in Python 3.


	Added a new key-value pair in json output. The key is message-id
and the value is the message id.
Close #1512


	Added a new Python 3.0 check for raising a StopIteration inside a generator.
The check about raising a StopIteration inside a generator is also valid if the exception
raised inherit from StopIteration.
Close #1385


	Added a new warning, raising-format-tuple, to detect multi-argument
exception construction instead of message string formatting.


	Added a new check for method of logging module that concatenate string via + operator
Close #1479


	Added parameter for limiting number of suggestions in spellchecking checkers


	Fix a corner-case in consider-using-ternary checker.

When object A used in  X and A or B was falsy in boolean context,
Pylint incorrectly emitted non-equivalent ternary-based suggestion.
After a change message is correctly not emitted for this case.
Close #1559



	Added suggestion-mode configuration flag. When flag is enabled, informational
message is emitted instead of cryptic error message for attributes accessed on
c-extensions.
Close #1466


	Fix a false positive useless-super-delegation message when
parameters default values are different from those used in the base class.
Close #1085


	Disabling 'wrong-import-order', 'wrong-import-position', or
'ungrouped-imports' for a single line now prevents that line from
triggering violations on subsequent lines.

Close #1336



	Added a new Python check for inconsistent return statements inside method or function.
Close #1267


	Fix superfluous-parens false positive related to handling logical statements
involving in operator.

Close #574



	function-redefined message is no longer emitted for functions and
methods which names matches dummy variable name regular expression.
Close #1369


	Fix missing-param-doc and missing-type-doc false positives when
mixing Args and Keyword Args in Google docstring.
Close #1409






	Fix missing-docstring false negatives when modules, classes, or methods
consist of compound statements that exceed the docstring-min-length








	Fix useless-else-on-loop false positives when break statements are
deeply nested inside loop.
Close #1661


	Fix no wrong-import-order message emitted on ordering of first and third party
libraries. With this fix, pylint distinguishes third and first party
modules when checking import order.
Close #1702


	Fix pylint disable=fixme directives ignored for comments following the
last statement in a file.
Close #1681


	Fix line-too-long message deactivated by wrong disable directive.
The directive disable=fixme doesn't deactivate anymore the emission
of line-too-long message for long commented lines.
Close #1741


	If the rcfile specified on the command line doesn't exist, then an
IOError exception is raised.
Close #1747


	Fix the wrong scope of the disable= directive after a commented line.
For example when a disable=line-too-long directive is at the end of
a long commented line, it no longer disables the emission of line-too-long
message for lines that follow.
Close #1742










What's New in Pylint 1.7.1?

Release date: 2017-04-17



	Fix a false positive which occurred when an exception was reraised

Close #1419



	Fix a false positive of disallow-trailing-tuple

The check was improved by verifying for non-terminating newlines, which
should exempt function calls and function definitions from the check
Close #1424











What's New in Pylint 1.7?

Release date: 2017-04-13



	Don't emit missing-final-newline or trailing-whitespace for formfeeds (page breaks).

Close #1218 and #1219



	Don't emit by default no-member if we have opaque inference objects in the inference results

This is controlled through the new flag ignore-on-opaque-inference, which is by
default True. The inference can return  multiple potential results while
evaluating a Python object, but some branches might not be evaluated, which
results in partial inference. In that case, it might be useful to still emit
no-member and other checks for the rest of the inferred objects.



	Added new message assign-to-new-keyword to warn about assigning to names which
will become a keyword in future Python releases.

Close #1351



	Split the 'missing or differing' in parameter documentation in different error.
'differing-param-doc' covers the differing part of the old 'missing-param-doc',
and 'differing-type-doc' covers the differing part of the old 'missing-type-doc'

Close #1342



	Added a new error, 'used-prior-global-declaration', which is emitted when a name
is used prior a global declaration in a function. This causes a SyntaxError in
Python 3.6

Close #1257



	The protocol checks are emitting their messages when a special method is set to None.

Close #1263



	Properly detect if imported name is assigned to same name in different
scope.

Close #636, #848, #851, and #900



	Require one space for annotations with type hints, as per PEP 8.


	'trailing-comma-tuple' check was added

This message is emitted when pylint finds an one-element tuple,
created by a stray comma. This can suggest a potential problem in the
code and it is recommended to use parantheses in order to emphasise the
creation of a tuple, rather than relying on the comma itself.



	Don't emit not-callable for instances with unknown bases.

Close #1213



	Treat keyword only arguments the same as positional arguments with regard to unused-argument check


	Don't try to access variables defined in a separate scope when checking for protected-access


	Added new check to detect incorrect usage of len(SEQUENCE) inside
test conditions.


	Added new extension to detect comparisons against empty string constants


	Added new extension to detect comparisons of integers against zero


	Added new error conditions for 'bad-super-call'

Now detects super(type(self), self) and super(self.__class__, self)
which can lead to recursion loop in derived classes.



	PyLinter.should_analyze_file has a new optional parameter, called is_argument

Close #1079



	Add attribute hints for missing members

Closes #1035



	Add a new warning, 'redefined-argument-from-local'

Closes #649



	Support inline comments for comma separated values in the config file

Closes #1024



	epylint.py_run's script parameter was removed.


	epylint.py_run now uses shell=False for running the underlying process.

Closes #441



	Added a new warning, 'useless-super-delegation'

Close 839.



	Added a new error, 'invalid-metaclass', raised when
we can detect that a class is using an improper metaclass.

Close #579



	Added a new refactoring message, 'literal-comparison'.

Close #786



	arguments-differ takes in consideration kwonlyargs and variadics

Close #983



	Removed --optimized-ast. Part of #975.


	Removed --files-output option. Part of #975.


	Removed pylint-gui from the package.


	Removed the HTML reporter. Part of #975.


	ignored-argument-names is now used for ignoring arguments for unused-variable check.

This option was used for ignoring arguments when computing the correct number of arguments
a function should have, but for handling the arguments with regard
to unused-variable check, dummy-variables-rgx was used instead. Now, ignored-argument-names
is used for its original purpose and also for ignoring the matched arguments for
the unused-variable check. This offers a better control of what should be ignored
and how.
Also, the same option was moved from the design checker to the variables checker,
which means that the option now appears under the [VARIABLES] section inside
the configuration file.
Close #862.



	Fix a false positive for keyword variadics with regard to keyword only arguments.

If a keyword only argument was necessary for a function, but that function was called
with keyword variadics (**kwargs), then we were emitting a missing-kwoa false positive,
which is now fixed.

Close #934.



	Fix some false positives with unknown sized variadics.

Close #878



	Added a new extension, check_docstring, for checking PEP 257 conventions.

Closes #868.



	config files with BOM markers can now be read.

Close #864.



	epylint.py_run does not crash on big files, using .communicate() instead of .wait()

Close #599



	Disable reports by default and show the evaluation score by default

As per discussion from issue #746, the reports were disabled by
default in order to simplify the interaction between the tool
and the users. The score is still shown by default, as a way of
closely measuring when it increases or decreases due to changes
brought to the code.



	Disable the information category messages by default.

This is a step towards making pylint more sane, as
per the discussion from issue #746.



	Catch more cases as not proper iterables for __slots__ with
regard to invalid-slots pattern. Closes issue #775.


	empty indent strings are rejected.


	Added a new error, 'relative-beyond-top-level', which is emitted
when a relative import was attempted beyond the top level package.

Closes issue #588.



	Added a new warning, 'unsupported-assignment-operation', which is
emitted when item assignment is tried on an object which doesn't
have this ability. Closes issue #591.


	Added a new warning, 'unsupported-delete-operation', which is
emitted when item deletion is tried on an object which doesn't
have this ability. Closes issue #592.


	Fix a false positive of 'redundant-returns-doc', occurred when the documented
function was using yield instead of return.

Closes issue #984.



	Fix false positives of 'missing-[raises|params|type]-doc' due to not
recognizing keyword synonyms supported by Sphinx.


	Added a new refactoring message, 'consider-merging-isinstance', which is
emitted whenever we can detect that consecutive isinstance calls can be
merged together.

Closes issue #968



	Fix a false positive of 'missing-param-doc' and 'missing-type-doc',
occurred when a class docstring uses the 'For the parameters, see'
magic string but the class __init__ docstring does not, or vice versa.


	redefined-outer-name is now also emitted when a nested loop's target
variable is the same as a target variable in an outer loop.

Closes issue #911.



	Added proper exception type inference for 'missing-raises-doc'.


	Added InvalidMessageError exception class to replace asserts in
pylint.utils.


	More thorough validation in MessagesStore.register_messages() to avoid
one message accidentally overwriting another.


	InvalidMessageError, UnknownMessage, and EmptyReport exceptions are
moved to the new pylint.exceptions submodule.


	UnknownMessage and EmptyReport are renamed to UnknownMessageError and
EmptyReportError.


	Warnings 'missing-returns-type-doc' and 'missing-yields-type-doc'
have each been split into two warnings - 'missing-[return|yield]-doc'
and 'missing-[return|yield]-type-doc'.


	Added epytext support to docparams extension.

Closes #1029.



	Support having plugins with the same name and with options defined

Closes #1018



	Sort configuration options in a section

Closes #1087



	Added a new Python 3 warning around implementing '__div__', '__idiv__', or
'__rdiv__' as those methods are phased out in Python 3.


	Added a new warning, 'overlapping-except', which is
emitted when two exceptions in the same except-clause are aliases
for each other or one exceptions is an ancestor of another.


	Avoid crashing on ill-formatted strings when checking for string formatting errors.


	Added a new Python 3 warning for calling 'str.encode' or 'str.decode' with a non-text
encoding.


	Added new coding convention message, 'single-string-used-for-slots'.

Closes #1166



	Added a new Python 3 check for accessing 'sys.maxint' which was removed in Python 3 in favor
of 'sys.maxsize'


	Added a new Python 3 check for bad imports.


	Added a new Python 3 check for accessing deprecated string functions.


	Do not warn about unused arguments or function being redefined in singledispatch
registered implementations.

Closes #1032 and #1034



	Added refactoring message 'no-else-return'.


	Improve unused-variable checker to warn about unused variables in module scope.

Closes #919



	Ignore modules import as _ when checking for unused imports.

Closes #1190



	Improve handing of Python 3 classes with metaclasses declared in nested scopes.

Closes #1177



	Added refactoring message 'consider-using-ternary'.

Closes #1204



	Bug-fix for false-positive logging-format-interpolation` when format specifications
are used in formatted string.

Fixes #572



	Added a new switch single-line-class-stmt to allow single-line declaration
of empty class bodies.

Closes #738



	Protected access in form type(self)._attribute are now allowed.

Fixes #1031



	Let the user modify msg-template when Pylint is called from a Python script

Fixes #1269



	Imports checker supports new switch allow-wildcard-with-all which disables
warning on wildcard import when imported module defines __all__ variable.

Fixes #831



	too-many-format-args and too-few-format-args are emitted correctly when
starred expression are used in RHS tuple.

Fixes #957



	cyclic-import checker supports local disable clauses. When one
of cycle imports was done in scope where disable clause was active,
cycle is not reported as violation.

Fixes #59











What's new in Pylint 1.6.3?

Release date: 2016-07-18



	Do not crash when inferring uninferable exception types for docparams extension

Close #998











What's new in Pylint 1.6.2?

Release date: TBA



	Do not crash when printing the help of options with default regular expressions

Close #990



	More granular versions for deprecated modules.

Close #991











What's new in Pylint 1.6.1?

Release date: 2016-07-07



	Use environment markers for supporting conditional dependencies.










What's New in Pylint 1.6.0?

Release date: 2016-07-03



	Added a new extension, pylint.extensions.mccabe, for warning
about complexity in code.


	Deprecate support for --optimize-ast. Part of #975.


	Deprecate support for the HTML output. Part of #975.


	Deprecate support for --output-files. Part of #975.


	Fixed a documentation error for the check_docs extension. Fixes #735.


	Made the list of property-defining decorators configurable.


	Fix a bug where the top name of a qualified import was detected as unused variable.

Close #923.



	bad-builtin is now an extension check.


	generated-members support qualified name through regular expressions.

For instance, one can specify a regular expression as --generated-members=astroid.node_classes.*
for ignoring every no-member error that is accessed as in astroid.node_classes.missing.object.



	Add the ability to ignore files based on regex matching, with the new --ignore-patterns
option.

This addresses issue #156 by allowing for multiple ignore patterns
to be specified. Rather than clobber the existing ignore option, we
introduced a new one called ignore-patterns.



	Added a new error, 'trailing-newlines', which is emitted when a file
has trailing new lines.

Closes issue #682.



	Add a new option, 'redefining-builtins-modules', for controlling the modules
which can redefine builtins, such as six.moves and future.builtins.

Close #464.



	'reimported' is emitted when the same name is imported from different module.

Close #162.



	Add a new recommendation checker, 'consider-iterating-dictionary', which is emitted
which is emitted when a dictionary is iterated through .keys().

Close #699



	Use the configparser backport for Python 2

This fixes a problem we were having with comments inside values, which is fixed
in Python 3's configparser.
Close #828



	A new error was added, 'invalid-length-returned', when the __len__
special method returned something else than a non-negative number.

Close issue #557



	Switch to using isort internally for wrong-import-order.

Closes #879.



	check_docs extension can find constructor parameters in __init__.

Closes #887.



	Don't warn about invalid-sequence-index if the indexed object has unknown base
classes.

Closes #867



	Don't crash when checking, for super-init-not-called, a method defined in an if block.


	Do not emit import-error or no-name-in-module for fallback import blocks by default.

Until now, we warned with these errors when a fallback import block (a TryExcept block
that contained imports for Python 2 and 3) was found, but this gets cumbersome when
trying to write compatible code. As such, we don't check these blocks by default,
but the analysis can be enforced by using the new --analyse-fallback-block flag.

Close #769.











What's New in Pylint 1.5.5?

Release date: 2016-03-21



	Let visit_importfrom from Python 3 porting checker be called when everything is disabled

Because the visit method was filtering the patterns it was expecting to be activated,
it didn't run when everything but one pattern was disabled, leading to spurious false
positives

Close #852



	Don't emit unsubscriptable-value for classes with unknown
base classes.

Close #776.



	Use an OrderedDict for storing the configuration elements

This fixes an issue related to impredictible order of the disable / enable
elements from a config file. In certain cases, the disable was coming before
the enable which resulted in classes of errors to be enabled, even though the intention
was to disable them. The best example for this was in the context of running multiple
processes, each one of it having different enables / disables that affected the output.

Close #815



	Don't consider bare and broad except handlers as ignoring NameError,
AttributeError and similar exceptions, in the context of checkers for
these issues.

Closes issue #826











What's New in Pylint 1.5.4?

Release date: 2016-01-15



	Merge StringMethodChecker with StringFormatChecker. This fixes a
bug where disabling all the messages and enabling only a handful of
messages from the StringFormatChecker would have resulted in no
messages at all.


	Don't apply unneeded-not over sets.










What's New in Pylint 1.5.3?

Release date: 2016-01-11



	Handle the import fallback idiom with regard to wrong-import-order.

Closes issue #750.



	Decouple the displaying of reports from the displaying of messages

Some reporters are aggregating the messages instead of displaying
them when they are available. The actual displaying was conflatted
in the generate_reports. Unfortunately this behaviour was flaky
and in the case of the JSON reporter, the messages weren't shown
at all if a file had syntax errors or if it was missing.
In order to fix this, the aggregated messages can now be
displayed with Reporter.display_message, while the reports are
displayed with display_reports.

Closes issues #766 and #765.



	Ignore function calls with variadic arguments without a context.

Inferring variadic positional arguments and keyword arguments
will result into empty Tuples and Dicts, which can lead in
some cases to false positives with regard to no-value-for-parameter.
In order to avoid this, until we'll have support for call context
propagation, we're ignoring such cases if detected.
Closes issue #722.



	Treat AsyncFunctionDef just like FunctionDef nodes,
by implementing visit_asyncfunctiondef in terms of
visit_functiondef.

Closes issue #767.



	Take in account kwonlyargs when verifying that arguments
are defined with the check_docs extension.

Closes issue #745.



	Suppress reporting 'unneeded-not' inside __ne__ methods

Closes issue #749.











What's New in Pylint 1.5.2?

Release date: 2015-12-21



	Don't crash if graphviz is not installed, instead emit a
warning letting the user to know.

Closes issue #168.



	Accept only functions and methods for the deprecated-method checker.

This prevents a crash which can occur when an object doesn't have
.qname() method after the inference.



	Don't emit super-on-old-class on classes with unknown bases.
Closes issue #721.


	Allow statements in if or try blocks containing imports.

Closes issue #714.











What's New in Pylint 1.5.1?

Release date: 2015-12-02



	Fix a crash which occurred when old visit methods are encountered
in plugin modules. Closes issue #711.


	Add wrong-import-position to check_messages's decorator arguments
for ImportChecker.leave_module
This fixes an esoteric bug which occurs when ungrouped-imports and
wrong-import-order are disabled and pylint is executed on multiple files.
What happens is that without wrong-import-position in check_messages,
leave_module will never be called, which means that the first non-import node
from other files might leak into the current file,
leading to wrong-import-position being emitted by pylint.


	Fix a crash which occurred when old visit methods are encountered
in plugin modules. Closes issue #711.


	Don't emit import-self and cyclic-import for relative imports
of modules with the same name as the package itself.
Closes issues #708 and #706.










What's New in Pylint 1.5.0?

Release date: 2015-11-29



	Added multiple warnings related to imports. 'wrong-import-order'
is emitted when PEP 8 recommendations regarding imports are not
respected (that is, standard imports should be followed by third-party
imports and then by local imports). 'ungrouped-imports' is emitted
when imports from the same package or module are not placed
together, but scattered around in the code. 'wrong-import-position'
is emitted when code is mixed with imports, being recommended for the
latter to be at the top of the file, in order to figure out easier by
a human reader what dependencies a module has.
Closes issue #692.


	Added a new refactoring warning, 'unneeded-not', emitted
when an expression with the not operator could be simplified.
Closes issue #670.


	Added a new refactoring warning, 'simplifiable-if-statement',
used when an if statement could be reduced to a boolean evaluation
of its test. Closes issue #698.


	Added a new refactoring warning, 'too-many-boolean-expressions',
used when an if statement contains too many boolean expressions,
which makes the code less maintainable and harder to understand.
Closes issue #677.


	Property methods are shown as attributes instead of functions in
pyreverse class diagrams. Closes Issue #284


	Add a new refactoring error, 'too-many-nested-blocks', which is emitted
when a function or a method has too many nested blocks, which makes the
code less readable and harder to understand. Closes issue #668.


	Add a new error, 'unsubscriptable-object', that is emitted when
value used in subscription expression doesn't support subscription
(i.e. doesn't define __getitem__ method).


	Don't warn about abstract classes instantiated in their own
body. Closes issue #627.


	Obsolete options are not present by default in the generated
configuration file. Closes issue #632.


	non-iterator-returned can detect classes with iterator-metaclasses.
Closes issue #679.


	Add a new error, 'unsupported-membership-test', emitted when value
to the right of the 'in' operator doesn't support membership test
protocol (i.e. doesn't define __contains__/__iter__/__getitem__)


	Add new errors, 'not-an-iterable', emitted when non-iterable value
is used in an iterating context (starargs, for-statement,
comprehensions, etc), and 'not-a-mapping', emitted when non-mapping
value is used in a mapping context. Closes issue #563.


	Make 'no-self-use' checker not emit a warning if there is a 'super()'
call inside the method.
Closes issue #667.


	Add checker to identify multiple imports on one line.
Closes issue #598.


	Fix unused-argument false positive when the "+=" operator is used.
Closes issue #518.


	Don't emit import-error for ignored modules. PyLint will not emit import
errors for any import which is, or is a subpackage of, a module in
the ignored-modules list. Closes issue #223.


	Fix unused-import false positive when the import is used in a
class assignment. Closes issue #475


	Add a new error, 'not-context-manager', emitted when something
that doesn't implement __enter__ and __exit__ is used in a with
statement.


	Add a new warning, 'confusing-with-statement', emitted by the
base checker, when an ambiguous looking with statement is used.
For example with open() as first, second which looks like a
tuple assignment but is actually 2 context managers.


	Add a new warning, 'duplicate-except', emitted when there is an
exception handler which handles an exception type that was handled
before. Closes issue #485.


	A couple of warnings got promoted to errors, since they could uncover
potential bugs in the code. These warnings are: assignment-from-none,
unbalanced-tuple-unpacking, unpacking-non-sequence, non-iterator-returned.
Closes issue #388.


	Allow ending a pragma control with a semicolon. In this way, users
can continue a pragma control with a reason for why it is used,
as in # pylint: disable=old-style-class;reason=....
Closes issue #449.


	--jobs can be used with --load-plugins now. Closes issue #456.


	Improve the performance of --jobs when dealing only with a package
name. Closes issue #479.


	Don't emit an unused-wildcard-import when the imported name comes
from another module and it is in fact a __future__ name.


	The colorized reporter now works on Windows. Closes issue #96.


	Remove pointless-except warning. It was previously disabled by
default and it wasn't very useful. Closes issue #506.


	Fix a crash on Python 3 related to the string checker, which
crashed when it encountered a bytes string with a .format
method called.


	Don't warn about no-self-use for builtin properties.


	Fix a false positive for bad-reversed-sequence, when a subclass
of a dict provides a __reversed__ method.


	Change the default no-docstring-rgx so missing-docstring isn't
emitted for private functions.


	Don't emit redefined-outer-name for __future__ directives.
Closes issue #520.


	Provide some hints for the bad-builtin message. Closes issue #522.


	When checking for invalid arguments to a callable, in typecheck.py,
look up for the __init__ in case the found __new__ comes from builtins.

Since the __new__ comes from builtins, it will not have attached any
information regarding what parameters it expects, so the check
will be useless. Retrieving __init__ in that case will at least
detect a couple of false negatives. Closes issue #429.



	Don't emit no-member for classes with unknown bases.

Since we don't know what those bases might add, we simply ignore
the error in this case.



	Lookup in the implicit metaclass when checking for no-member,
if the class in question has an implicit metaclass, which is
True for new style classes. Closes issue #438.


	Add two new warnings, duplicate-bases and inconsistent-mro.

duplicate-bases is emitted when a class has the same bases
listed more than once in its bases definition, while inconsistent-mro
is emitted when no sane mro hierarchy can be determined. Closes issue #526.



	Remove interface-not-implemented warning. Closes issue #532.


	Remove the rest of interface checks: interface-is-not-class,
missing-interface-method, unresolved-interface. The reason is that
its better to start recommending ABCs instead of the old Zope era
of interfaces. One side effect of this change is that ignore-iface-methods
becomes a noop, it's deprecated and it will be removed at some time.


	Emit a proper deprecation warning for reporters.BaseReporter.add_message.

The alternative way is to use handle_message. add_message will be removed in
Pylint 1.6.



	Added new module 'extensions' for optional checkers with the test
directory 'test/extensions' and documentation file 'doc/extensions.rst'.


	Added new checker 'extensions.check_docs' that verifies parameter
documention in Sphinx, Google, and Numpy style.


	Detect undefined variable cases, where the "definition" of an undefined
variable was in del statement. Instead of emitting used-before-assignment,
which is totally misleading, it now emits undefined-variable.
Closes issue #528.


	Don't emit attribute-defined-outside-init and access-member-before-definition
for mixin classes. Actual errors can occur in mixin classes, but this is
controlled by the ignore-mixin-members option. Closes issue #412.


	Improve the detection of undefined variables and variables used before
assignment for variables used as default arguments to function,
where the variable was first defined in the class scope.
Closes issue #342 and issue #404.


	Add a new warning, 'unexpected-special-method-signature', which is emitted
when a special method (dunder method) doesn't have the expected signature,
which can lead to actual errors in the application code.
Closes issue #253.


	Remove 'bad-context-manager' due to the inclusion of 'unexpected-special-method-signature'.


	Don't emit no-name-in-module if the import is guarded by an ImportError, Exception or
a bare except clause.


	Don't emit no-member if the attribute access node is protected by an
except handler, which handles AttributeError, Exception or it is a
bare except.


	Don't emit import-error if the import is guarded by an ImportError, Exception or a
bare except clause.


	Don't emit undefined-variable if the node is guarded by a NameError, Exception
or bare except clause.


	Add a new warning, 'using-constant-test', which is emitted when a conditional
statement (If, IfExp) uses a test which is always constant, such as numbers,
classes, functions etc. This is most likely an error from the user's part.
Closes issue #524.


	Don't emit 'raising-non-exception' when the exception has unknown
bases. We don't know what those bases actually are and it's better
to assume that the user knows what he is doing rather than emitting
a message which can be considered a false positive.


	Look for a .pylintrc configuration file in the current folder,
if pylintrc is not found. Dotted pylintrc files will not be searched
in the parents of the current folder, as it is done for pylintrc.


	Add a new error, 'invalid-unary-type-operand', emitted when
an unary operand is used on something which doesn't support that
operation (for instance, using the unary bitwise inversion operator
on an instance which doesn't implement __invert__).


	Take in consideration differences between arguments of various
type of functions (classmethods, staticmethods, properties)
when checking for arguments-differ. Closes issue #548.


	astroid.inspector was moved to pylint.pyreverse, since it belongs
there and it doesn't need to be in astroid.


	astroid.utils.LocalsVisitor was moved to pylint.pyreverse.LocalsVisitor.


	pylint.checkers.utils.excepts_import_error was removed.
Use pylint.chekcers.utils.error_of_type instead.


	Don't emit undefined-all-variables for nodes which can't be
inferred (YES nodes).


	yield-outside-func is also emitted for yield from.


	Add a new error, 'too-many-star-expressions', emitted when
there are more than one starred expression (*x) in an assignment.
The warning is emitted only on Python 3.


	Add a new error, 'invalid-star-assignment-target', emitted when
a starred expression (*x) is used as the lhs side of an assignment,
as in *x = [1, 2]. This is not a SyntaxError on Python 3 though.


	Detect a couple of objects which can't be base classes (bool,
slice, range and memoryview, which weren't detected until now).


	Add a new error for the Python 3 porting checker, import-star-module-level,
which is used when a star import is detected in another scope than the
module level, which is an error on Python 3. Using this will emit a
SyntaxWarning on Python 2.


	Add a new error, 'star-needs-assignment-target', emitted on Python 3 when
a Starred expression (*x) is not used in an assignment target. This is not
caught when parsing the AST on Python 3, so it needs to be a separate check.


	Add a new error, 'unsupported-binary-operation', emitted when
two a binary arithmetic operation is executed between two objects
which don't support it (a number plus a string for instance).
This is currently disabled, since the it exhibits way too many false
positives, but it will be reenabled as soon as possible.


	New imported features from astroid into pyreverse: pyreverse.inspector.Project,
pyreverse.inspector.project_from_files and pyreverse.inspector.interfaces.

These were moved since they didn't belong in astroid.



	Enable misplaced-future for Python 3. Closes issue #580.


	Add a new error, 'nonlocal-and-global', which is emitted when a
name is found to be both nonlocal and global in the same scope.
Closes issue #581.


	ignored-classes option can work with qualified names (ignored-classes=optparse.Values)
Closes issue #297.


	ignored-modules can work with qualified names as well as with Unix pattern
matching for recursive ignoring. Closes issues #244.


	Improve detection of relative imports in non-packages, as well as importing
missing modules with a relative import from a package.


	Don't emit no-init if not all the bases from a class are known.
Closes issue #604.


	--no-space-check option accepts empty-line as a possible option.
Closes issue #541.


	--generate-rcfile generates by default human readable symbols
for the --disable option. Closes issue #608.


	Improved the not-in-loop checker to properly detect more cases.


	Add a new error, 'continue-in-finally', which is emitted when
the continue keyword is found inside a finally clause, which
is a SyntaxError.


	The --zope flag is deprecated and it is slated for removal
in Pylint 1.6.

The reason behind this removal is the fact that it's a specialized
flag and there are solutions for the original problem:
use --generated-members with the members that causes problems
when using Zope or add AST transforms tailored to the zope
project.

At the same time, --include-ids and --symbols will also be removed
in Pylint 1.6. Closes issue #570.



	missing-module-attribute was removed and the corresponding
CLI option, required-attributes, which is slated for removal
in Pylint 1.6.


	missing-reversed-argument was removed.

The reason behind this is that this kind of errors should be
detected by the type checker for all the builtins and not
as a special case for the reversed builtin. This will happen
shortly in the future.



	--comment flag is obsolete and it will be removed in Pylint 1.6.


	--profile flag is obsolete and it will be removed in Pylint 1.6.


	Add a new error, 'misplaced-bare-raise'.

The error is used when a bare raise is not used inside an except clause.
This can generate a RuntimeError in Python, if there are no active exceptions
to be reraised. While it works in Python 2 due to the fact that the exception
leaks outside of the except block, it's nevertheless a behaviour that
a user shouldn't depend upon, since it's not obvious to the reader of the code
what exception will be raised and it will not be compatible with Python 3 anyhow.
Closes issue #633.



	Bring logilab-common's ureports into pylint.reporters.

With this change, we moved away from depending on logilab-common,
having in Pylint all the components that were used from logilab-common.
The API should be considered an implementation detail and can change at
some point in the future.
Closes issue #621.



	reimported is emitted for reimported objects on the same line.

Closes issue #639.



	Abbreviations of command line options are not supported anymore.

Using abbreviations for CLI options was never considered to be
a feature of pylint, this fact being only a side effect of using optparse.
As this was the case, using --load-plugin or other abbreviation
for --load-plugins never actually worked, while it also didn't raise
an error. Closes issue #424.



	Add a new error, 'nonlocal-without-binding'

The error is emitted on Python 3 when a nonlocal name is not bound
to any variable in the parents scopes. Closes issue #582.



	
	'deprecated-module' can be shown for modules which aren't

	available. Closes issue #362.







	Don't consider a class abstract if its members can't
be properly inferred.

This fixes a false positive related to abstract-class-instantiated.
Closes issue #648.



	Add a new checker for the async features added by PEP 492.


	Add a new error, 'yield-inside-async-function', emitted on
Python 3.5 and upwards when the yield statement is found inside
a new coroutine function (PEP 492).


	Add a new error, 'not-async-context-manager', emitted when
an async context manager block is used with an object which doesn't
support this protocol (PEP 492).


	Add a new convention warning, 'singleton-comparison', emitted when
comparison to True, False or None is found.


	Don't emit 'assigning-non-slot' for descriptors. Closes issue #652.


	Add a new error, 'repeated-keyword', when a keyword argument is passed
multiple times into a function call.

This is similar with redundant-keyword-arg, but it's mildly different
that it needs to be a separate error.



	--enable=all can now be used. Closes issue #142.


	Add a new convention message, 'misplaced-comparison-constant',
emitted when a constant is placed in the left hand side of a comparison,
as in '5 == func()'. This is also called Yoda condition, since the
flow of code reminds of the Star Wars green character, conditions usually
encountered in languages with variabile assignments in conditional
statements.


	Add a new convention message, 'consider-using-enumerate', which is
emitted when code that uses range and len for iterating is encountered.
Closes issue #684.


	Added two new refactoring messages, 'no-classmethod-decorator' and
'no-staticmethod-decorator', which are emitted when a static method or a class
method is declared without using decorators syntax.

Closes issue #675.











What's New in Pylint 1.4.3?

Release date: 2015-03-14



	Remove three warnings: star-args, abstract-class-little-used,
abstract-class-not-used. These warnings don't add any real value
and they don't imply errors or problems in the code.


	Added a new option for controlling the peephole optimizer in astroid.
The option --optimize-ast will control the peephole optimizer,
which is used to optimize a couple of AST subtrees. The current problem
solved by the peephole optimizer is when multiple joined strings,
with the addition operator, are encountered. If the numbers of such
strings is high enough, Pylint will then fail with a maximum recursion
depth exceeded error, due to its visitor architecture. The peephole
just transforms such calls, if it can, into the final resulting string
and this exhibit a problem, because the visit_binop method stops being
called (in the optimized AST it will be a Const node).










What's New in Pylint 1.4.2?

Release date: 2015-03-11



	Don't require a docstring for empty modules. Closes issue #261.


	Fix a false positive with too-few-format-args string warning,
emitted when the string format contained a normal positional
argument ('{0}'), mixed with a positional argument which did
an attribute access ('{0.__class__}').
Closes issue #463.


	Take in account all the methods from the ancestors
when checking for too-few-public-methods. Closes issue #471.


	Catch enchant errors and emit 'invalid-characters-in-docstring'
when checking for spelling errors. Closes issue #469.


	Use all the inferred statements for the super-init-not-called
check. Closes issue #389.


	Add a new warning, 'unichr-builtin', emitted by the Python 3
porting checker, when the unichr builtin is found. Closes issue #472.


	Add a new warning, 'intern-builtin', emitted by the Python 3
porting checker, when the intern builtin is found. Closes issue #473.


	Add support for editable installations.


	The HTML output accepts the --msg-template option. Patch by
Dan Goldsmith.


	Add 'map-builtin-not-iterating' (replacing 'implicit-map-evaluation'),
'zip-builtin-not-iterating', 'range-builtin-not-iterating', and
'filter-builtin-not-iterating' which are emitted by --py3k when the
appropriate built-in is not used in an iterating context (semantics
taken from 2to3).


	Add a new warning, 'unidiomatic-typecheck', emitted when an explicit
typecheck uses type() instead of isinstance(). For example,
type(x) == Y instead of isinstance(x, Y). Patch by Chris Rebert.
Closes issue #299.


	Add support for combining the Python 3 checker mode with the --jobs
flag (--py3k and --jobs). Closes issue #467.


	Add a new warning for the Python 3 porting checker, 'using-cmp-argument',
emitted when the cmp argument for the list.sort or sorted builtin
is encountered.


	Make the --py3k flag commutative with the -E flag. Also, this patch
fixes the leaks of error messages from the Python 3 checker when
the errors mode was activated. Closes issue #437.










What's New in Pylint 1.4.1?

Release date: 2015-01-16



	Look only in the current function's scope for bad-super-call.
Closes issue #403.


	Check the return of properties when checking for not-callable.
Closes issue #406.


	Warn about using the input() or round() built-ins for Python 3.
Closes issue #411.


	Proper abstract method lookup while checking for
abstract-class-instantiated. Closes issue #401.


	Use a mro traversal for finding abstract methods. Closes issue #415.


	Fix a false positive with catching-non-exception and tuples of
exceptions.


	Fix a false negative with raising-non-exception, when the raise used
an uninferrable exception context.


	Fix a false positive on Python 2 for raising-bad-type, when
raising tuples in the form 'raise (ZeroDivisionError, None)'.


	Fix a false positive with invalid-slots-objects, where the slot entry
was a unicode string on Python 2. Closes issue #421.


	Add a new warning, 'redundant-unittest-assert', emitted when using
unittest's methods assertTrue and assertFalse with constant value
as argument. Patch by Vlad Temian.


	Add a new JSON reporter, usable through -f flag.


	Add the method names for the 'signature-differs' and 'argument-differs'
warnings. Closes issue #433.


	Don't compile test files when installing.


	Fix a crash which occurred when using multiple jobs and the files
given as argument didn't exist at all.










What's New in Pylint 1.4.0?

Release date: 2014-11-23



	Added new options for controlling the loading of C extensions.
By default, only C extensions from the stdlib will be loaded
into the active Python interpreter for inspection, because they
can run arbitrary code on import. The option
--extension-pkg-whitelist can be used to specify modules
or packages that are safe to load.


	Change default max-line-length to 100 rather than 80


	Drop BaseRawChecker class which were only there for backward
compat for a while now


	Don't try to analyze string formatting with objects coming from
function arguments. Closes issue #373.


	Port source code to be Python 2/3 compatible. This drops the
need for 2to3, but does drop support for Python 2.5.


	Each message now comes with a confidence level attached, and
can be filtered base on this level. This allows to filter out
all messages that were emitted even though an inference failure
happened during checking.


	Improved presenting unused-import message. Closes issue #293.


	Add new checker for finding spelling errors. New messages:
wrong-spelling-in-comment, wrong-spelling-in-docstring.
New options: spelling-dict, spelling-ignore-words.


	Add new '-j' option for running checks in sub-processes.


	Added new checks for line endings if they are mixed (LF vs CRLF)
or if they are not as expected. New messages: mixed-line-endings,
unexpected-line-ending-format. New option: expected-line-ending-format.


	'dangerous-default-value' no longer evaluates the value of the arguments,
which could result in long error messages or sensitive data being leaked.
Closes issue #282


	Fix a false positive with string formatting checker, when
encountering a string which uses only position-based arguments.
Closes issue #285.


	Fix a false positive with string formatting checker, when using
keyword argument packing. Closes issue #288.


	Proper handle class level scope for lambdas.


	Handle 'too-few-format-args' or 'too-many-format-args' for format
strings with both named and positional fields. Closes issue #286.


	Analyze only strings by the string format checker. Closes issue #287.


	Properly handle nested format string fields. Closes issue #294.


	Don't emit 'attribute-defined-outside-init' if the attribute
was set by a function call in a defining method. Closes issue #192.


	Properly handle unicode format strings for Python 2.
Closes issue #296.


	Don't emit 'import-error' if an import was protected by a try-except,
which excepted ImportError.


	Fix an 'unused-import' false positive, when the error was emitted
for all the members imported with 'from import' form.
Closes issue #304.


	Don't emit 'invalid-name' when assigning a name in an
ImportError handler. Closes issue #302.


	Don't count branches from nested functions.


	Fix a false positive with 'too-few-format-args', when the format
strings contains duplicate manual position arguments.
Closes issue #310.


	fixme regex handles comments without spaces after the hash.
Closes issue #311.


	Don't emit 'unused-import' when a special object is imported
(__all__, __doc__ etc.). Closes issue #309.


	Look in the metaclass, if defined, for members not found in the current
class. Closes issue #306.


	Don't emit 'protected-access' if the attribute is accessed using
a property defined at the class level.


	Detect calls of the parent's __init__, through a binded super() call.


	Check that a class has an explicitly defined metaclass before
emitting 'old-style-class' for Python 2.


	Emit 'catching-non-exception' for non-class nodes. Closes issue #303.


	Order of reporting is consistent.


	Add a new warning, 'boolean-datetime', emitted when an instance
of 'datetime.time' is used in a boolean context. Closes issue #239.


	Fix a crash which occurred while checking for 'method-hidden',
when the parent frame was something different than a function.


	Generate html output for missing files. Closes issue #320.


	Fix a false positive with 'too-many-format-args', when the format
string contains mixed attribute access arguments and manual
fields. Closes issue #322.


	Extend the cases where 'undefined-variable' and 'used-before-assignment'
can be detected. Closes issue #291.


	Add support for customising callback identifiers, by adding a new
'--callbacks' command line option. Closes issue #326.


	Add a new warning, 'logging-format-interpolation', emitted when .format()
string interpolation is used within logging function calls.


	Don't emit 'unbalanced-tuple-unpacking' when the rhs of the assignment
is a variable length argument. Closes issue #329.


	Add a new warning, 'inherit-non-class', emitted when a class inherits
from something which is not a class. Closes issue #331.


	Fix another false positives with 'undefined-variable', where the variable
can be found as a class assignment and used in a function annotation.
Closes issue #342.


	Handle assignment of the string format method to a variable.
Closes issue #351.


	Support wheel packaging format for PyPi. Closes issue #334.


	Check that various built-ins that do not exist in Python 3 are not
used: apply, basestring, buffer, cmp, coerce, execfile, file, long
raw_input, reduce, StandardError, unicode, reload and xrange.


	Warn for magic methods which are not used in any way in Python 3:
__coerce__, __delslice__, __getslice__, __setslice__, __cmp__,
__oct__, __nonzero__ and __hex__.


	Don't emit 'assigning-non-slot' when the assignment is for a property.
Closes issue #359.


	Fix for regression: '{path}' was no longer accepted in '--msg-template'.


	Report the percentage of all messages, not just for errors and warnings.
Closes issue #319.


	'too-many-public-methods' is reported only for methods defined in a class,
not in its ancestors. Closes issue #248.


	'too-many-lines' disable pragma can be located on any line, not only the
first. Closes issue #321.


	Warn in Python 2 when an import statement is found without a
corresponding from __future__ import absolute_import.


	Warn in Python 2 when a non-floor division operation is found without
a corresponding from __future__ import division.


	Add a new option, 'exclude-protected', for excluding members
from the protected-access warning. Closes issue #48.


	Warn in Python 2 when using dict.iter*(), dict.view*(); none of these
methods are available in Python 3.


	Warn in Python 2 when calling an object's next() method; Python 3 uses
__next__() instead.


	Warn when assigning to __metaclass__ at a class scope; in Python 3 a
metaclass is specified as an argument to the 'class' statement.


	Warn when performing parameter tuple unpacking; it is not supported in
Python 3.


	'abstract-class-instantiated' is also emitted for Python 2.
It was previously disabled.


	Add 'long-suffix' error, emitted when encountering the long suffix
on numbers.


	Add support for disabling a checker, by specifying an 'enabled'
attribute on the checker class.


	Add a new CLI option, --py3k, for enabling Python 3 porting mode. This
mode will disable all other checkers and will emit warnings and
errors for constructs which are invalid or removed in Python 3.


	Add 'old-octal-literal' to Python 3 porting checker, emitted when
encountering octals with the old syntax.


	Add 'implicit-map-evaluation' to Python 3 porting checker, emitted
when encountering the use of map builtin, without explicit evaluation.










What's New in Pylint 1.3.0?

Release date: 2014-07-26



	Allow hanging continued indentation for implicitly concatenated
strings. Closes issue #232.


	Pylint works under Python 2.5 again, and its test suite passes.


	Fix some false positives for the cellvar-from-loop warnings.
Closes issue #233.


	Return new astroid class nodes when the inferencer can detect that
that result of a function invocation on a type (like type or
abc.ABCMeta) is requested. Closes #205.


	Emit 'undefined-variable' for undefined names when using the
Python 3 metaclass= argument.


	Checkers respect priority now. Close issue #229.


	Fix a false positive regarding W0511. Closes issue #149.


	Fix unused-import false positive with Python 3 metaclasses (#143).


	Don't warn with 'bad-format-character' when encountering
the 'a' format on Python 3.


	Add multiple checks for PEP 3101 advanced string formatting:
'bad-format-string', 'missing-format-argument-key',
'unused-format-string-argument', 'format-combined-specification',
'missing-format-attribute' and 'invalid-format-index'.


	Issue broad-except and bare-except even if the number
of except handlers is different than 1. Fixes issue #113.


	Issue attribute-defined-outside-init for all cases, not just
for the last assignment. Closes issue #262.


	Emit 'not-callable' when calling properties. Closes issue #268.


	Fix a false positive with unbalanced iterable unpacking,
when encountering starred nodes. Closes issue #273.


	Add new checks, 'invalid-slice-index' and 'invalid-sequence-index'
for invalid sequence and slice indices.


	Add 'assigning-non-slot' warning, which detects assignments to
attributes not defined in slots.


	Don't emit 'no-name-in-module' for ignored modules.
Closes issue #223.


	Fix an 'unused-variable' false positive, where the variable is
assigned through an import. Closes issue #196.


	Definition order is considered for classes, function arguments
and annotations. Closes issue #257.


	Don't emit 'unused-variable' when assigning to a nonlocal.
Closes issue #275.


	Do not let ImportError propagate from the import checker, leading to crash
in some namespace package related cases. Closes issue #203.


	Don't emit 'pointless-string-statement' for attribute docstrings.
Closes issue #193.


	Use the proper mode for pickle when opening and writing the stats file.
Closes issue #148.


	Don't emit hidden-method message when the attribute has been
monkey-patched, you're on your own when you do that.


	Only emit attribute-defined-outside-init for definition within the same
module as the offended class, avoiding to mangle the output in some cases.


	Don't emit 'unnecessary-lambda' if the body of the lambda call contains
call chaining. Closes issue #243.


	Don't emit 'missing-docstring' when the actual docstring uses .format.
Closes issue #281.










What's New in Pylint 1.2.1?

Release date: 2014-04-30



	Restore the ability to specify the init-hook option via the
configuration file, which was accidentally broken in 1.2.0.


	Add a new warning [bad-continuation] for badly indentend continued
lines.


	Emit [assignment-from-none] when the function contains bare returns.
Fixes BitBucket issue #191.


	Added a new warning for closing over variables that are
defined in loops. Fixes Bitbucket issue #176.


	Do not warn about u escapes in string literals when Unicode literals
are used for Python 2.*. Fixes BitBucket issue #151.


	Extend the checking for unbalanced-tuple-unpacking and
unpacking-non-sequence to instance attribute unpacking as well.


	Fix explicit checking of python script (1.2 regression, #219)


	Restore --init-hook, renamed accidentally into --init-hooks in 1.2.0
(#211)


	Add 'indexing-exception' warning, which detects that indexing
an exception occurs in Python 2 (behaviour removed in Python 3).










What's New in Pylint 1.2.0?

Release date: 2014-04-18



	Pass the current python paths to pylint process when invoked via
epylint.  Fixes BitBucket issue #133.


	Add -i / --include-ids and -s / --symbols back as completely ignored
options. Fixes BitBucket issue #180.


	Extend the number of cases in which logging calls are detected. Fixes
bitbucket issue #182.


	Improve pragma handling to not detect pylint:* strings in non-comments.
Fixes BitBucket issue #79.


	Do not crash with UnknownMessage if an unknown message ID/name appears
in disable or enable in the configuration. Patch by Cole Robinson.
Fixes bitbucket issue #170.


	Add new warning 'eval-used', checking that the builtin function eval
was used.


	Make it possible to show a naming hint for invalid name by setting
include-naming-hint. Also make the naming hints configurable. Fixes
BitBucket issue #138.


	Added support for enforcing multiple, but consistent name styles for
different name types inside a single module; based on a patch written
by morbo@google.com.


	Also warn about empty docstrings on overridden methods; contributed
by sebastianu@google.com.


	Also inspect arguments to constructor calls, and emit relevant
warnings; contributed by sebastianu@google.com.


	Added a new configuration option logging-modules to make the list
of module names that can be checked for 'logging-not-lazy' et. al.
configurable; contributed by morbo@google.com.


	ensure init-hooks is evaluated before other options, notably load-plugins
(#166)


	Python 2.5 support restored: fixed small issues preventing pylint to run
on python 2.5. Bitbucket issues #50 and #62.


	bitbucket #128: pylint doesn't crash when looking
for used-before-assignment in context manager
assignments.


	Add new warning, 'bad-reversed-sequence', for checking that the
reversed() builtin receive a sequence (implements __getitem__ and __len__,
without being a dict or a dict subclass) or an instance which implements
__reversed__.


	Mark file as a bad function when using python2 (closes #8).


	Add new warning 'bad-exception-context', checking
that raise ... from ... uses a proper exception context
(None or an exception).


	Enhance the check for 'used-before-assignment' to look
for 'nonlocal' uses.


	Emit 'undefined-all-variable' if a package's __all__
variable contains a missing submodule (closes #126).


	Add a new warning 'abstract-class-instantiated' for checking
that abstract classes created with abc module and
with abstract methods are instantied.


	Do not warn about 'return-arg-in-generator' in Python 3.3+.


	Do not warn about 'abstract-method' when the abstract method
is implemented through assignment (#155).


	Improve cyclic import detection in the case of packages, patch by Buck
Golemon


	Add new warnings for checking proper class __slots__:
invalid-slots-object and invalid-slots.


	Search for rc file in ~/.config/pylintrc if ~/.pylintrc
doesn't exists (#121)


	Don't register the newstyle checker w/ python >= 3


	Fix unused-import false positive w/ augment assignment (#78)


	Fix access-member-before-definition false negative wrt aug assign (#164)


	Do not attempt to analyze non python file, eg .so file (#122)










What's New in Pylint 1.1.0?

Release date: 2013-12-22



	Add new check for use of deprecated pragma directives "pylint:disable-msg"
or "pylint:enable-msg" (I0022, deprecated-pragma) which was previously
emitted as a regular warn().


	Avoid false used-before-assignment for except handler defined
identifier used on the same line (#111).


	Combine 'no-space-after-operator', 'no-space-after-comma' and
'no-space-before-operator' into a new warning 'bad-whitespace'.


	Add a new warning 'superfluous-parens' for unnecessary
parentheses after certain keywords.


	Fix a potential crash in the redefine-in-handler warning
if the redefined name is a nested getattr node.


	Add a new option for the multi-statement warning to
allow single-line if statements.


	Add 'bad-context-manager' error, checking that '__exit__'
special method accepts the right number of arguments.


	Run pylint as a python module 'python -m pylint' (anatoly techtonik).


	Check for non-exception classes inside an except clause.


	epylint support options to give to pylint after the file to analyze and
have basic input validation (bitbucket #53 and #54), patches provided by
felipeochoa and Brian Lane.


	Added a new warning, 'non-iterator-returned', for non-iterators
returned by '__iter__'.


	Add new checks for unpacking non-sequences in assignments
(unpacking-non-sequence) as well as unbalanced tuple unpacking
(unbalanced-tuple-unpacking).


	useless-else-on-loop not emitted if there is a break in the
else clause of inner loop (#117).


	don't mark input as a bad function when using python3 (#110).


	badly-implemented-container caused several problems in its
current implementation. Deactivate it until we have something
better. See #112 for instance.


	Use attribute regexp for properties in python3, as in python2


	Create the PYLINTHOME directory when needed, it might fail and lead to
spurious warnings on import of pylint.config.


	Fix setup.py so that pylint properly install on Windows when using python3


	Various documentation fixes and enhancements


	Fix issue #55 (false-positive trailing-whitespace on Windows)










What's New in Pylint 1.0.0?

Release date: 2013-08-06



	Add check for the use of 'exec' function


	New --msg-template option to control output, deprecating "msvc" and
"parseable" output formats as well as killing --include-ids and --symbols
options


	Do not emit [fixme] for every line if the config value 'notes'
is empty, but [fixme] is enabled.


	Emit warnings about lines exceeding the column limit when
those lines are inside multiline docstrings.


	Do not double-check parameter names with the regex for parameters and
inline variables.


	Added a new warning missing-final-newline (C0304) for files missing
the final newline.


	Methods that are decorated as properties are now treated as attributes
for the purposes of name checking.


	Names of derived instance class member are not checked any more.


	Names in global statements are now checked against the regular
expression for constants.


	For toplevel name assignment, the class name regex will be used if
pylint can detect that value on the right-hand side is a class
(like collections.namedtuple()).


	Simplified invalid-name message


	Added a new warning invalid-encoded-data (W0512) for files that
contain data that cannot be decoded with the specified or
default encoding.


	New warning bad-open-mode (W1501) for calls to open (or file) that
specify invalid open modes (Original implementation by Sasha Issayev).


	New warning old-style-class (C1001) for classes that do not have any
base class.


	Add new name type 'class_attribute' for attributes defined
in class scope. By default, allow both const and variable names.


	New warning trailing-whitespace (C0303) that warns about
trailing whitespace.


	Added a new warning unpacking-in-except (W0712) about unpacking
exceptions in handlers, which is unsupported in Python 3.


	Add a configuration option for missing-docstring to
optionally exempt short functions/methods/classes from
the check.


	Add the type of the offending node to missing-docstring
and empty-docstring.


	New utility classes for per-checker unittests in testutils.py


	Do not warn about redefinitions of variables that match the
dummy regex.


	Do not treat all variables starting with _ as dummy variables,
only _ itself.


	Make the line-too-long warning configurable by adding a regex for lines
for with the length limit should not be enforced


	Do not warn about a long line if a pylint disable
option brings it above the length limit


	Do not flag names in nested with statements as undefined.


	Added a new warning 'old-raise-syntax' for the deprecated syntax
raise Exception, args


	Support for PEP 3102 and new missing-kwoa (E1125) message for missing
mandatory keyword argument (logilab.org's #107788)


	Fix spelling of max-branchs option, now max-branches


	Added a new base class and interface for checkers that work on the
tokens rather than the syntax, and only tokenize the input file
once.


	Follow astng renaming to astroid


	bitbucket #37: check for unbalanced unpacking in assignments


	bitbucket #25: fix incomplete-protocol false positive for read-only
containers like tuple


	bitbucket #16: fix False positive E1003 on Python 3 for argument-less super()


	bitbucket #6: put back documentation in source distribution


	bitbucket #15: epylint shouldn't hang anymore when there is a large
output on pylint'stderr


	bitbucket #7: fix epylint w/ python3


	bitbucket #3: remove string module from the default list of deprecated
modules










What's New in Pylint 0.28.0?

Release date: 2013-04-25



	bitbucket #1: fix "dictionary changed size during iteration" crash


	#74013: new E1310[bad-str-strip-call] message warning when a call to a
{l,r,}strip method contains duplicate characters (patch by Torsten Marek)


	#123233: new E0108[duplicate-argument-name] message reporting duplicate
argument names


	#81378: emit W0120[useless-else-on-loop] for loops without break


	#124660: internal dependencies should not appear in external dependencies
report


	#124662: fix name error causing crash when symbols are included in output
messages


	#123285: apply pragmas for warnings attached to lines to physical source
code lines


	#123259: do not emit E0105 for yield expressions inside lambdas


	#123892: don't crash when attempting to show source code line that can't
be encoded with the current locale settings


	Simplify checks for dangerous default values by unifying tests for all
different mutable compound literals.


	Improve the description for E1124[redundant-keyword-arg]










What's New in Pylint 0.27.0?

Release date: 2013-02-26



	#20693: replace pylint.el by Ian Eure version (patch by J.Kotta)


	#105327: add support for --disable=all option and deprecate the
'disable-all' inline directive in favour of 'skip-file' (patch by
A.Fayolle)


	#110840: add messages I0020 and I0021 for reporting of suppressed
messages and useless suppression pragmas. (patch by Torsten Marek)


	#112728: add warning E0604 for non-string objects in __all__
(patch by Torsten Marek)


	#120657: add warning W0110/deprecated-lambda when a map/filter
of a lambda could be a comprehension (patch by Martin Pool)


	#113231: logging checker now looks at instances of Logger classes
in addition to the base logging module. (patch by Mike Bryant)


	#111799: don't warn about octal escape sequence, but warn about o
which is not octal in Python (patch by Martin Pool)


	#110839: bind <F5> to Run button in pylint-gui


	#115580: fix erroneous W0212 (access to protected member) on super call
(patch by Martin Pool)


	#110853: fix a crash when an __init__ method in a base class has been
created by assignment rather than direct function definition (patch by
Torsten Marek)


	#110838: fix pylint-gui crash when include-ids is activated (patch by
Omega Weapon)


	#112667: fix emission of reimport warnings for mixed imports and extend
the testcase (patch by Torsten Marek)


	#112698: fix crash related to non-inferable __all__ attributes and
invalid __all__ contents (patch by Torsten Marek)


	Python 3 related fixes:


	
	#110213: fix import of checkers broken with python 3.3, causing

	"No such message id W0704" breakage







	#120635: redefine cmp function used in pylint.reporters


	Include full warning id for I0020 and I0021 and make sure to flush
warnings after each module, not at the end of the pylint run.
(patch by Torsten Marek)


	Changed the regular expression for inline options so that it must be
preceded by a # (patch by Torsten Marek)


	Make dot output for import graph predictable and not depend
on ordering of strings in hashes. (patch by Torsten Marek)


	Add hooks for import path setup and move pylint's sys.path
modifications into them. (patch by Torsten Marek)










What's New in Pylint 0.26.0?

Release date: 2012-10-05



	#106534: add --ignore-imports option to code similarity checking
and 'symilar' command line tool (patch by Ry4an Brase)


	#104571: check for anomalous backslash escape, introducing new
W1401 and W1402 messages (patch by Martin Pool)


	#100707: check for boolop being used as exception class, introducing
new W0711 message (patch by Tim Hatch)


	#4014: improve checking of metaclass methods first args, introducing
new C0204 message (patch by lothiraldan@gmail.com finalized by sthenault)


	#4685: check for consistency of a module's __all__ variable,
introducing new E0603 message


	#105337: allow custom reporter in output-format (patch by Kevin Jing Qiu)


	#104420: check for protocol completness and avoid false R0903
(patch by Peter Hammond)


	#100654: fix grammatical error for W0332 message (using 'l' as
long int identifier)


	#103656: fix W0231 false positive for missing call to object.__init__
(patch by lothiraldan@gmail.com)


	#63424: fix similarity report disabling by properly renaming it to RP0801


	#103949: create a console_scripts entry point to be used by
easy_install, buildout and pip


	fix cross-interpreter issue (non compatible access to __builtins__)


	stop including tests files in distribution, they causes crash when
installed with python3 (#72022, #82417, #76910)










What's New in Pylint 0.25.2?

Release date: 2012-07-17



	#93591: Correctly emit warnings about clobbered variable names when an
except handler contains a tuple of names instead of a single name.
(patch by tmarek@google.com)


	#7394: W0212 (access to protected member) not emitted on assigments
(patch by lothiraldan@gmail.com)


	#18772; no prototype consistency check for mangled methods (patch by
lothiraldan@gmail.com)


	#92911: emit W0102 when sets are used as default arguments in functions
(patch by tmarek@google.com)


	#77982: do not emit E0602 for loop variables of comprehensions
used as argument values inside a decorator (patch by tmarek@google.com)


	#89092: don't emit E0202 (attribute hiding a method) on @property methods


	#92584: fix pylint-gui crash due to internal API change


	#87192: fix crash when decorators are accessed through more than one dot
(for instance @a.b is fine, @a.b.c crash)


	#88914: fix parsing of --generated-members options, leading to crash
when using a regexp value set


	fix potential crashes with utils.safe_infer raising InferenceError










What's New in Pylint 0.25.1?

Release date: 2011-12-08



	#81078: Warn if names in  exception handlers clobber overwrite
existing names (patch by tmarek@google.com)


	#81113: Fix W0702 messages appearing with the wrong line number.
(patch by tmarek@google.com)


	#50461, #52020, #51222: Do not issue warnings when using 2.6's
property.setter/deleter functionality (patch by dneil@google.com)


	#9188, #4024: Do not trigger W0631 if a loop variable is assigned
in the else branch of a for loop.










What's New in Pylint 0.25.0?

Release date: 2011-10-7



	#74742: make allowed name for first argument of class method configurable
(patch by Google)


	#74087: handle case where inference of a module return YES; this avoid
some cases of "TypeError: '_Yes' object does not support indexing" (patch
by Google)


	#74745: make "too general" exception names configurable (patch by Google)


	#74747: crash occurs when lookup up a special attribute in class scope
(patch by google)


	#76920: crash if on eg "pylint --rcfile" (patch by Torsten Marek)


	#77237: warning for E0202 may be very misleading


	#73941: HTML report messages table is badly rendered










What's New in Pylint 0.24.0?

Release date: 2011-07-18



	#69738: add regular expressions support for "generated-members"


	ids of logging and string_format checkers have been changed:
logging: 65 -> 12, string_format: 99 -> 13
Also add documentation to say that ids of range 1-50 shall be reserved
to pylint internal checkers


	#69993: Additional string format checks for logging module:
check for missing arguments, too many arguments, or invalid string
formats in the logging checker module. Contributed by Daniel Arena


	#69220: add column offset to the reports. If you've a custom reporter,
this change may break it has now location gain a new item giving the
column offset.


	#60828: Fix false positive in reimport check


	#70495: absolute imports fail depending on module path (patch by Jacek Konieczny)


	#22273: Fix --ignore option documentation to match reality










What's New in Pylint 0.23.0?

Release date: 2011-01-11



	documentation update, add manpages


	several performance improvements


	finalize python3 support


	new W0106 warning 'Expression "%s" is assigned to nothing'


	drop E0501 and E0502 messages about wrong source encoding: not anymore
interesting since it's a syntax error for python >= 2.5 and we now only
support this python version and above.


	don't emit W0221 or W0222 when methods as variable arguments (eg *arg
and/or **args). Patch submitted by Charles Duffy.










What's New in Pylint 0.22.0?

Release date: 2010-11-15



	python versions: minimal python3.x support; drop python < 2.5 support










What's New in Pylint 0.21.4?

Release date: 2010-10-27



	fix #48066: pylint crashes when redirecting output containing non-ascii characters


	fix #19799: "pylint -blah" exit with status 2


	update documentation










What's New in Pylint 0.21.3?

Release date: 2010-09-28



	restored python 2.3 compatibility. Along with logilab-astng
0.21.3 and logilab-common 0.52, this will much probably be the
latest release supporting python < 2.5.










What's New in Pylint 0.21.2?

Release date: 2010-08-26



	fix #36193: import checker raise exception on cyclic import


	fix #28796: regression in --generated-members introduced pylint 0.20


	some documentation cleanups










What's New in Pylint 0.21.1?

Release date: 2010-06-04



	fix #28962: pylint crash with new options, due to missing stats data while
writing the Statistics by types report


	updated man page to 0.21 or greater command line usage (fix debian #582494)










What's New in Pylint 0.21.0?

Release date: 2010-05-11



	command line updated (closes #9774, #9787, #9992, #22962):


	all enable-* / disable-* options have been merged into --enable / --disable


	BACKWARD INCOMPATIBLE CHANGE: short name of --errors-only becomes -E, -e being
affected to --enable


	pylint --help output much simplified, with --long-help available to get the
complete one


	revisited gui, thanks to students from Toronto university (they are great
contributors to this release!)


	fix #21591: html reporter produces no output if reports is set to 'no'


	fix #4581: not Missing docstring (C0111) warning if a method is overridden


	fix #4683: Non-ASCII characters count double if utf8 encode


	fix #9018: when using defining-attr-method, method order matters


	fix #4595: Comma not followed by a space should not occurs on trailing comma
in list/tuple/dict definition


	fix #22585: [Patch] fix man warnings for pyreverse.1 manpage


	fix #20067: AttributeError: 'NoneType' object has no attribute 'name' with with










What's New in Pylint 0.20.0?

Release date: 2010-03-01



	fix #19498: fix windows batch file


	fix #19339: pylint.el : non existing py-mod-map
(closes Debian Bug report logs - #475939)


	implement #18860, new W0199 message on assert (a, b)


	implement #9776, 'W0150' break or return statement in finally block may
swallow exception.


	fix #9263, __init__ and __new__ are checked for unused arguments


	fix #20991, class scope definitions ignored in a genexpr


	fix #5975, Abstract intermediate class not recognized as such


	fix #5977, yield and return statement have their own counters, no more R0911
(Too many return statements) when a function have many yield stamtements


	implement #5564, function / method arguments with leading "_" are ignored in
arguments / local variables count.


	implement #9982, E0711 specific error message when raising NotImplemented


	remove --cache-size option










What's New in Pylint 0.19.0?

Release date: 2009-12-18



	implement #18947, #5561: checker for function arguments


	include James Lingard string format checker


	include simple message (ids) listing by Vincent Ferotin (#9791)


	--errors-only does not hide fatal error anymore


	include james Lingard patches for ++/-- and duplicate key in dicts


	include James Lingard patches for function call arguments checker


	improved flymake code and doc provided by Derek Harland


	refactor and fix the imports checker


	fix #18862: E0601 false positive with lambda functions


	fix #8764: More than one statement on a single line false positive with
try/except/finally


	fix #9215: false undefined variable error in lambda function


	fix for w0108 false positive (Nathaniel)


	fix test/fulltest.sh


	#5821 added a utility function to run pylint in another process (patch provide by Vincent Ferotin)










What's New in Pylint 0.18.0?

Release date: 2009-03-25



	tests ok with python 2.4, 2.5, 2.6. 2.3 not tested


	fix #8687, W0613 false positive on inner function


	fix #8350, C0322 false positive on multi-line string


	fix #8332: set E0501 line no to the first line where non ascii character
has been found


	avoid some E0203 / E0602 false negatives by detecting respectively
AttributeError / NameError


	implements #4037: don't issue W0142 (* or ** magic) when they are barely
passed from /* arguments


	complete #5573: more complete list of special methods, also skip W0613
for python internal method


	don't show information messages by default


	integration of Yuen Ho Wong's patches on emacs lisp files










What's New in Pylint 0.17.0?

Release date: 2009-03-19



	semicolon check : move W0601 to W0301


	remove rpython : remove all rpython checker, modules and tests


	astng 0.18 compatibility: support for _ast module modifies interfaces










What's New in Pylint 0.16.0?

Release date: 2009-01-28



	change [en|dis]able-msg-cat options: only accept message categories
identified by their first letter (eg IRCWEF) without the need for comma
as separator


	add epylint.bat script to fix Windows installation


	setuptools/easy_install support


	include a modified version of Maarten ter Huurne patch to avoid W0613
warning on arguments from overridden method


	implement #5575  drop dumb W0704 message) by adding W0704 to ignored
messages by default


	new W0108 message, checking for suspicious lambda (provided by  Nathaniel
Manista)


	fix W0631, false positive reported by Paul Hachmann


	fix #6951: false positive with W0104


	fix #6949


	patches by Mads Kiilerich:


	implement #4691, make pylint exits with a non zero return
status if any messages other then Information are issued


	fix #3711, #5626 (name resolution bug w/ decorator and class members)


	fix #6954










What's New in Pylint 0.15.2?

Release date: 2008-10-13



	fix #5672: W0706 weirdness ( W0706 removed )


	fix #5998: documentation points to wrong url for mailing list


	fix #6022: no error message on wrong module names


	fix #6040: pytest doesn't run test/func_test.py










What's New in Pylint 0.15.1?

Release date: 2008-09-15



	fix #4910: default values are missing in manpage


	fix #5991: missing files in 0.15.0 tarball


	fix #5993: epylint should work with python 2.3










What's New in Pylint 0.15.0?

Release date: 2008-09-10



	include pyreverse package and class diagram generation


	included Stefan Rank's patch to deal with 2.4 relative import


	included Robert Kirkpatrick's tutorial and typos fixes


	fix bug in reenabling message


	fix #2473: invoking pylint on __init__.py (hopefully)


	typecheck: acquired-members option has been dropped in favor of the more
generic generated-members option. If the zope option is set, the behaviour
is now to add some default values to generated-members.


	flymake integration: added bin/epylint and elisp/pylint-flymake.el










What's New in Pylint 0.14.0?

Release date: 2008-01-14



	fix #3733: Messages (dis)appear depending on order of file names


	fix #4026: pylint.el should require compile


	fix a bug in colorized reporter, spotted by Dave Borowitz


	applied patch from Stefan Rank to avoid W0410 false positive when
multiple "from __future__" import statements


	implement #4012: flag back tick as deprecated (new W0333 message)


	new ignored-class option on typecheck checker allowing to skip members
checking based on class name (patch provided by Thomas W Barr)










What's New in Pylint 0.13.2?

Release date: 2007-06-07



	fix disable-checker option so that it won't accidentally enable the
rpython checker which is disabled by default


	added note about the gedit plugin into documentation










What's New in Pylint 0.13.1?

Release date: 2007-03-02



	fix some unexplained 0.13.0 packaging issue which led to a bunch of
files missing from the distribution










What's New in Pylint 0.13.0?

Release date: 2007-02-28



	new RPython (Restricted Python) checker for PyPy fellow or people
wanting to get a compiled version of their python program using the
translator of the PyPy project. For more information about PyPy or
RPython, visit http://codespeak.net/pypy/


	new E0104 and E0105 messages introduced to respectively warn about
"return" and "yield" outside function or method


	new E0106 message when "yield" and "return something" are mixed in a
function or method


	new W0107 message for unnecessary pass statement


	new W0614 message to differentiate between unused import X and
unused from X import * (#3209, patch submitted by Daniel Drake)


	included Daniel Drake's patch to have a different message E1003 instead of
E1001 when a missing member is found but an inference failure has been
detected


	msvs reporter for Visual Studio line number reporting (#3285)


	allow disable-all option inline (#3218, patch submitted by Daniel Drake)


	--init-hook option to call arbitrary code necessary to set
environment (eg sys.path) (#3156)


	One more Daniel's patch fixing a command line option parsing
problem, this'll definitely be the DDrake release :)


	fix #3184: crashes on "return" outside function


	fix #3205: W0704 false positive


	fix #3123: W0212 false positive on static method


	fix #2485: W0222 false positive


	fix #3259: when a message is explicitly enabled, check the checker
emitting it is enabled










What's New in Pylint 0.12.2?

Release date: 2006-11-23



	fix #3143: W0233 bug w/ YES objects


	fix #3119: Off-by-one error counting lines in a file


	fix #3117: ease sys.stdout overriding for reporters


	fix #2508: E0601 false positive with lambda


	fix #3125: E1101 false positive and a message duplication. Only the last part
is actually fixed since the initial false positive is due to dynamic setting of
attributes on the decimal.Context class.


	fix #3149: E0101 false positives and introduced E0100 for generator __init__
methods


	fixed some format checker false positives










What's New in Pylint 0.12.1?

Release date: 2006-09-25



	fixed python >= 2.4 format false positive with multiple lines statement


	fixed some 2.5 issues


	fixed generator expression scope bug (depends on astng 0.16.1)


	stop requiring __revision__










What's New in Pylint 0.12.0?

Release date: 2006-08-10



	usability changes:



	parseable, html and color options are now handled by a single
output-format option


	enable-<checkerid> and disable-all options are now handled by
two (exclusive) enable-checker and disable-checker options
taking a comma separated list of checker names as value


	renamed debug-mode option to errors-only









	started a reference user manual


	new W0212 message for access to protected member from client code
(close #14081)


	new W0105 and W0106 messages extracted from W0104 (statement seems
to have no effect) respectively when the statement is actually string
(that's sometimes used instead of comments for documentation) or an
empty  statement generated by a useless semicolon


	reclassified W0302 to C0302


	fix so that global messages are not anymore connected to the last
analyzed module (close #10106)


	fix some bugs related to local disabling of messages


	fix cr/lf pb when generating the rc file on windows platforms










What's New in Pylint 0.11.0?

Release date: 2006-04-19



	fix crash caused by the exceptions checker in some case


	fix some E1101 false positive with abstract method or classes defining
__getattr__


	dirty fix to avoid "_socketobject" has not "connect" member. The actual
problem is that astng isn't able to understand the code used to create
socket.socket object with exec


	added an option in the similarity checker to ignore docstrings, enabled
by default


	included patch from Benjamin Niemann to allow block level
enabling/disabling of messages










What's New in Pylint 0.10.0?

Release date: 2006-03-06



	WARNING, this release include some configuration changes (see below),
so you may have to check and update your own configuration file(s) if
you use one


	this release require the 0.15 version of astng or superior (it will save
you a lot of pylint crashes...)


	W0705 has been reclassified to E0701, and is now detecting more
inheriting problem, and a false positive when empty except clause is
following an Exception catch has been fixed (close #10422)


	E0212 and E0214 (metaclass/class method should have mcs/cls as first
argument have been reclassified to C0202 and C0203 since this not as
well established as "self" for instance method (E0213)


	W0224 has been reclassified into F0220 (failed to resolve interfaces
implemented by a class)


	a new typecheck checker, introducing the following checks:



	E1101, access to unexistent member (implements #10430), remove
the need of E0201 and so some options has been moved from the
classes checker to this one


	E1102, calling a non callable object


	E1111 and W1111 when an assignment is done on a function call but the
inferred function returns None (implements #10431)









	change in the base checker:



	checks module level and instance attribute names (new const-rgx
and attr-rgx configuration option) (implements #10209  and
#10440)


	list comprehension and generator expression variables have their
own regular expression  (the inlinevar-rgx option) (implements
#9146)


	the C0101 check with its min-name-length option has
been removed (this can be specified in the regxp after all...)


	W0103 and W0121 are now handled by the variables checker
(W0103 is now W0603 and W0604 has been splitted into different messages)


	W0131 and W0132 messages  have been reclassified to C0111 and
C0112 respectively


	new W0104 message on statement without effect









	regexp support for dummy-variables (dummy-variables-rgx option
replace dummy-variables) (implements #10027)


	better global statement handling, see W0602, W0603, W0604 messages
(implements #10344 and #10236)


	--debug-mode option, disabling all checkers without error message
and filtering others to only display error


	fixed some R0201 (method could be a function) false positive










What's New in Pylint 0.9.0?

Release date: 2006-01-10



	a lot of updates to follow astng 0.14 API changes, so install
logilab-astng  0.14 or greater before using this version of pylint


	checker number 10 ! newstyle will search for problems regarding old
style / new style classes usage problems (rely on astng 0.14 new
style detection feature)


	new 'load-plugins' options to load additional pylint plugins (usable
from the command line or from a configuration file) (implements
#10031)


	check if a "pylintrc" file exists in the current working directory
before using the one specified in the PYLINTRC environment variable
or the default ~/.pylintrc or /etc/pylintrc


	fixed W0706 (Identifier used to raise an exception is assigned...)
false positive and reraising a catched exception instance


	fixed E0611 (No name get in module blabla) false positive when accessing
to a class'__dict__


	fixed some E0203 ("access to member before its definition") false
positive


	fixed E0214 ("metaclass method first argument should be mcs) false
positive with staticmethod used on a metaclass


	fixed packaging which was missing the test/regrtest_data directory


	W0212 (method could be a function) has been reclassified in the
REFACTOR category as R0201, and is no more considerer when a method
overrides an abstract method from an ancestor class


	include module name in W0401 (wildcard import), as suggested by
Amaury


	when using the '--parseable', path are written relative to the
current working directory if in a sub-directory of it (#9789)


	'pylint --version' shows logilab-astng and logilab-common versions


	fixed pylint.el to handle space in file names


	misc lint style fixes










What's New in Pylint 0.8.1?

Release date: 2005-11-07



	fix "deprecated module" false positive when the code imports a
module whose name starts with a deprecated module's name (close
#10061)


	fix "module has no name __dict__" false positive (close #10039)


	fix "access to undefined variable __path__" false positive (close
#10065)


	fix "explicit return in __init__" false positive when return is
actually in an inner function (close #10075)










What's New in Pylint 0.8.0?

Release date: 2005-10-21



	check names imported from a module exists in the module (E0611),
patch contributed by Amaury Forgeot d'Arc


	print a warning (W0212) for methods that could be a function
(implements #9100)


	new --defining-attr-methods option on classes checker


	new --acquired-members option on the classes checker, used when
--zope=yes to avoid false positive on acquired attributes (listed
using this new option) (close #8616)


	generate one E0602 for each use of an undefined variable
(previously, only one for the first use but not for the following)
(implements #1000)


	make profile option saveable


	fix Windows .bat file,  patch contributed by Amaury Forgeot d'Arc


	fix one more false positive for E0601 (access before definition)
with for loop such as "for i in range(10): print i" (test
func_noerror_defined_and_used_on_same_line)


	fix false positive for E0201 (undefined member) when accessing to
__name__ on a class object


	fix astng checkers traversal order


	fix bug in format checker when parsing a file from a platform
using different new line characters (close #9239)


	fix encoding detection regexp


	fix --rcfile handling (support for --rcfile=file, close #9590)










What's New in Pylint 0.7.0?

Release date: 2005-05-27



	WARNING: pylint is no longer a logilab subpackage. Users may have to
manually remove the old logilab/pylint directory.


	introduce a new --additional-builtins option to handle user defined
builtins


	--reports option has now -r as short alias, and -i for --include-ids


	fix a bug in the variables checker which may causing some false
positives when variables are defined and used within the same
statement (test func_noerror_defined_and_used_on_same_line)


	this time, real fix of the "disable-msg in the config file" problem,
test added to unittest_lint


	fix bug with --list-messages and python -OO


	fix possible false positive for W0201










What's New in Pylint 0.6.4?

Release date: 2005-04-14



	allow to parse files without extension when a path is given on the
command line (test noext)


	don't fail if we are unable to read an inline option  (e.g. inside a
module), just produce an information message (test func_i0010)


	new message E0103 for break or continue outside loop (close #8883,
test func_continue_not_in_loop)


	fix bug in the variables checker, causing non detection of some
actual name error (close #8884, test
func_nameerror_on_string_substitution)


	fix bug in the classes checker which was making pylint crash if
"object" is assigned in a class inheriting from it (test
func_noerror_object_as_class_attribute)


	fix problem with the similar checker when related options are
defined in a configuration file


	new --generate-man option to generate pylint's man page (require the
latest logilab.common (>= 0.9.3)


	packaged (generated...) man page










What's New in Pylint 0.6.3?

Release date: 2005-02-24



	fix scope problem which may cause false positive and true negative
on E0602


	fix problem with some options such as disable-msg causing error when
they are coming from the configuration file










What's New in Pylint 0.6.2?

Release date: 2005-02-16



	fix false positive on E0201 ("access to undefined member") with
metaclasses


	fix false positive on E0203 ("access to member before its
definition") when attributes are defined in a parent class


	fix false positive on W0706 ("identifier used to raise an exception
assigned to...")


	fix interpretation of "t" as value for the indent-string
configuration variable


	fix --rcfile so that --rcfile=pylintrc (only --rcfile pylintrc was
working in earlier release)


	new raw checker example in the examples/ directory










What's New in Pylint 0.6.1?

Release date: 2005-02-04



	new --rcfile option to specify the configuration file without the
PYLINTRC environment variable


	added an example module for a custom pylint checker (see the
example/ directory)


	some fixes to handle fixes in common 0.9.1 (should however still working
with common 0.9.0, even if upgrade is recommended)










What's New in Pylint 0.6.0?

Release date: 2005-01-20



	refix pylint emacs mode


	no more traceback when just typing "pylint"


	fix a bug which may cause crashes on resolving parent classes


	fix problems with the format checker: don't chock on files
containing multiple CR, avoid C0322, C0323, C0324 false positives
with triple quoted string with quote inside


	correctly detect access to member defined latter in __init__ method


	now depends on common 0.8.1 to fix problem with interface resolution
(close #8606)


	new --list-msgs option describing available checkers and their
messages


	added windows specific documentation to the README file, contributed
by Brian van den Broek


	updated doc/features.txt (actually this file is now generated using
the --list-msgs option), more entries into the FAQ


	improved tests coverage










What's New in Pylint 0.5.0?

Release date: 2004-10-19



	avoid importing analyzed modules !


	new Refactor and Convention message categories. Some Warnings have been
remaped into those new categories


	added "similar", a tool to find copied and pasted lines of code,
both using a specific command line tool and integrated as a
pylint's checker


	imports checker may report import dependencies as a dot graph


	new checker regrouping most Refactor detection (with some new metrics)


	more command line options storable in the configuration file


	fix bug with total / undocumented number of methods










What's New in Pylint 0.4.2?

Release date: 2004-07-08



	fix pylint emacs mode


	fix classes checkers to handler twisted interfaces










What's New in Pylint 0.4.1?

Release date: 2004-05-14



	fix the setup.py script to allow bdist_winst (well, the generated
installer has not been tested...) with the necessary
logilab/__init__.py file


	fix file naming convention as suggested by Andreas Amoroso


	fix stupid crash bug with bad method names










What's New in Pylint 0.4.0?

Release date: 2004-05-10



	fix file path with --parsable


	--parsable option has been renamed to --parseable


	added patch from Andreas Amoroso to output message to files instead
of standard output


	added Run to the list of correct variable names


	fix variable names regexp and checking of local classes names


	some basic handling of metaclasses


	no-docstring-rgx apply now on classes too


	new option to specify a different regexp for methods than for
functions


	do not display the evaluation report when no statements has been
analysed


	fixed crash with a class nested in a method


	fixed format checker to deals with triple quoted string and
lines with code and comment mixed


	use logilab.common.ureports to layout reports










What's New in Pylint 0.3.3?

Release date: 2004-02-17



	added a parsable text output, used when the --parsable option is
provided


	added an emacs mode using this output, available in the distrib's
elisp directory


	fixed some typos in messages


	change include-ids options to yn, and allow it to be in the
configuration file


	do not chock on corrupted stats files


	fixed bug in the format checker which may stop pylint execution


	provide scripts for unix and windows to wrap the minimal pylint tk
gui










What's New in Pylint 0.3.2?

Release date: 2003-12-23



	html-escape messages in the HTML reporter (bug reported by Juergen
Hermann)


	added "TODO" to the list of default note tags


	added "rexec" to the list of default deprecated modules


	fixed typos in some messages










What's New in Pylint 0.3.1?

Release date: 2003-12-05



	bug fix in format and classes checkers


	remove print statement from imports checkers


	provide a simple tk gui, essentially useful for windows users










What's New in Pylint 0.3.0?

Release date: 2003-11-20



	new exceptions checker, checking for string exception and empty
except clauses.


	imports checker checks for reimport of modules


	classes checker checks for calls to ancestor's __init__ and abstract
method not overridden. It doesn't complain anymore for unused import in
__init__ files, and provides a new option ignore-interface-methods,
useful when you're using zope Interface implementation in your project


	base checker checks for black listed builtins call (controlled by the
bad-functions option) and for use of * and **


	format checker checks for use of <> and "l" as long int marker


	major internal API changes


	use the rewrite of astng, based on compiler.ast


	added unique id for messages, as suggested by Wolfgang Grafen


	added unique id for reports


	can take multiple modules or files as argument


	new options command line options : --disable-msg, --enable-msg,
--help-msg, --include-ids, --reports, --disable-report, --cache-size


	--version shows the version of the python interpreter


	removed some options which are now replaced by [en|dis]able-msg, or
disable-report


	read disable-msg and enable-msg options in source files (should be
in comments on the top of the file, in the form
"# pylint: disable-msg=W0402"


	new message for modules importing themselves instead of the "cyclic
import" message


	fix bug with relative and cyclic imports


	fix bug in imports checker (cycle was not always detected)


	still fixes in format checker : don't check comment and docstring,
check first line after an indent


	black and white list now apply to all identifiers, not only
variables,  so changed the configuration option from
(good|bad)-variable-names to (good|bad)-names


	added string, rexec and Bastion to the default list of deprecated
modules


	do not print redefinition warning for function/class/method defined
in mutually exclusive branches










What's New in Pylint 0.2.1?

Release date: 2003-10-10



	added some documentation, fixed some typos


	set environment variable PYLINT_IMPORT to 1 during pylint execution.


	check that variables "imported" using the global statement exist


	indentation problems are now warning instead of errors


	fix checkers.initialize to try to load all files with a known python
extension (patch from wrobell)


	fix a bunch of messages


	fix sample configuration file


	fix the bad-construction option


	fix encoding checker


	fix format checker










What's New in Pylint 0.2.0?

Release date: 2003-09-12



	new source encoding / FIXME checker (pep 263)


	new --zope option which trigger Zope import. Useful to check Zope
products code.


	new --comment option which enable the evaluation note comment
(disabled by default).


	a ton of bug fixes


	easy functional test infrastructure










What's New in Pylint 0.1.2?

Release date: 2003-06-18



	bug fix release


	remove dependency to pyreverse










What's New in Pylint 0.1.1?

Release date: 2003-06-01



	much more functionalities !










What's New in Pylint 0.1?

Release date: 2003-05-19



	initial release













          

      

      

    

  

    
      
          
            

Index



 Symbols
 | C
 


Symbols


  	
      	
    --argument-naming-style=<style>

      
        	command line option


      


      	
    --argument-rgx=<regex>

      
        	command line option


      


      	
    --attr-naming-style=<style>

      
        	command line option


      


      	
    --attr-rgx=<regex>

      
        	command line option


      


      	
    --class-attribute-naming-style=<style>

      
        	command line option


      


      	
    --class-attribute-rgx=<regex>

      
        	command line option


      


      	
    --class-naming-style=<style>

      
        	command line option


      


      	
    --class-rgx=<regex>

      
        	command line option


      


      	
    --const-naming-style=<style>

      
        	command line option


      


      	
    --const-rgx=<regex>

      
        	command line option


      


      	
    --function-naming-style=<style>

      
        	command line option


      


  

  	
      	
    --function-rgx=<regex>

      
        	command line option


      


      	
    --include-naming-hint=y|n

      
        	command line option


      


      	
    --inlinevar-naming-style=<style>

      
        	command line option


      


      	
    --inlinevar-rgx=<regex>

      
        	command line option


      


      	
    --method-naming-style=<style>

      
        	command line option


      


      	
    --method-rgx=<regex>

      
        	command line option


      


      	
    --module-naming-style=<style>

      
        	command line option


      


      	
    --module-rgx=<regex>

      
        	command line option


      


      	
    --name-group=<name1:name2:...,...>

      
        	command line option


      


      	
    --variable-naming-style=<style>

      
        	command line option


      


      	
    --variable-rgx=<regex>

      
        	command line option


      


  





C


  	
      	
    command line option

      
        	--argument-naming-style=<style>


        	--argument-rgx=<regex>


        	--attr-naming-style=<style>


        	--attr-rgx=<regex>


        	--class-attribute-naming-style=<style>


        	--class-attribute-rgx=<regex>


        	--class-naming-style=<style>


        	--class-rgx=<regex>


        	--const-naming-style=<style>


        	--const-rgx=<regex>


        	--function-naming-style=<style>


        	--function-rgx=<regex>


        	--include-naming-hint=y|n


        	--inlinevar-naming-style=<style>


        	--inlinevar-rgx=<regex>


        	--method-naming-style=<style>


        	--method-rgx=<regex>


        	--module-naming-style=<style>


        	--module-rgx=<regex>


        	--name-group=<name1:name2:...,...>


        	--variable-naming-style=<style>


        	--variable-rgx=<regex>


      


  







          

      

      

    

  _static/down.png





_static/comment.png





_static/down-pressed.png





_static/plus.png





_static/file.png





_static/minus.png





_static/up-pressed.png





_static/up.png





_static/comment-bright.png





_static/ajax-loader.gif





_static/comment-close.png





nav.xhtml

    
      Table of Contents


      
        		
          Pylint User Manual
        


        		
          Introduction
        


        		
          Tutorial
        


        		
          User Guide
          
            		
              Installation
            


            		
              Running Pylint
            


            		
              Pylint output
            


            		
              Messages control
            


            		
              Configuration
            


            		
              Editor and IDE integration
            


          


        


        		
          How To Guides
          
            		
              How to Write a Checker
            


            		
              How To Write a Pylint Plugin
            


            		
              Transform plugins
            


          


        


        		
          Technical Reference
          
            		
              Startup and the Linter Class
            


            		
              Checkers
            


            		
              Optional Pylint checkers in the extensions module
            


            		
              Pylint features
            


            		
              Pylint and C extensions
            


          


        


        		
          Development
          
            		
              Contributing
            


          


        


        		
          Frequently Asked Questions
        


        		
          Some projects using Pylint
        


        		
          What's New in Pylint
          
            		
              What's New in Pylint 2.3
            


            		
              What's New in Pylint 2.2
            


            		
              What's New in Pylint 2.1
            


            		
              What's New in Pylint 2.0
            


            		
              What's New In Pylint 1.9
            


            		
              What's New In Pylint 1.8
            


            		
              What's New In Pylint 1.7
            


            		
              What's New In Pylint 1.6
            


            		
              Pylint's ChangeLog
            


          


        


      


    
  

